cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A201510 Number of ways to place 9 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 2578, 1247116, 97284860, 2817340064, 44218721793, 457851259868, 3506596268191, 21355746900992, 108582220087480, 477032549147428, 1857084405493128, 6529640029479296, 21044674478336823, 62903854631232636, 176034055470126073, 464793685059669728
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Explicit formula: n^18/362880 - n^16/2016 + n^15/2520 + 349*n^14/8640 - 23*n^13/360 - 277*n^12/144 + 163*n^11/36 + 199529*n^10/3456 - 4381*n^9/24 - 313811*n^8/288 + 1622087*n^7/360 + 1073654363*n^6/90720 - 12207881*n^5/180 - 24979477*n^4/504 + 72278641*n^3/126 - 11491519*n^2/45 - 6271604*n/3 + 2530368, n>=8.
G.f.: x^5*(14*x^21 - 226*x^20 + 2514*x^19 - 15414*x^18 + 54363*x^17 - 241813*x^16 + 1440666*x^15 - 4412622*x^14 - 2699713*x^13 + 64333547*x^12 - 202456488*x^11 + 209746960*x^10 + 407620979*x^9 - 1743413585*x^8 + 2469587594*x^7 - 1465834094*x^6 - 9995512037*x^5 - 6126508561*x^4 - 1179686478*x^3 - 74030494*x^2 - 1198134*x - 2578)/(x-1)^19.
a(n) = A232833(n,9). - R. J. Mathar, Apr 11 2024

A239352 van Heijst's upper bound on the number of squares inscribed by a real algebraic curve in R^2 of degree n, if the number is finite.

Original entry on oeis.org

0, 0, 1, 12, 48, 130, 285, 546, 952, 1548, 2385, 3520, 5016, 6942, 9373, 12390, 16080, 20536, 25857, 32148, 39520, 48090, 57981, 69322, 82248, 96900, 113425, 131976, 152712, 175798, 201405, 229710, 260896, 295152, 332673, 373660, 418320, 466866, 519517
Offset: 0

Views

Author

Jonathan Sondow, Mar 21 2014

Keywords

Comments

In 1911 Toeplitz conjectured the Square Peg (or Inscribed Square) Problem: Every continuous simple closed curve in the plane contains 4 points that are the vertices of a square. The conjecture is still open. Many special cases have been proved; see Matschke's beautiful 2014 survey.
Recently van Heijst proved that any real algebraic curve in R^2 of degree d inscribes either at most (d^4 - 5d^2 + 4d)/4 or infinitely many squares. He conjectured that a generic complex algebraic plane curve inscribes exactly (d^4 - 5d^2 + 4d)/4 squares.

Examples

			A point or a line has no inscribed squares, so a(0) = a(1) = 0.
A circle has infinitely many inscribed squares, and an ellipse that is not a circle has exactly one, agreeing with a(2) = 1.
G.f. = x^2 + 12*x^3 + 48*x^4 + 130*x^5 + 285*x^6 + 546*x^7 + 952*x^8 + ...
		

References

  • Otto Toeplitz, Über einige Aufgaben der Analysis situs, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Solothurn, 4 (1911), 197.

Crossrefs

Programs

  • Magma
    [(n^4 - 5*n^2 + 4*n)/4: n in [0..50]]; // G. C. Greubel, Aug 07 2018
  • Mathematica
    Table[(n^4 - 5 n^2 + 4 n)/4, {n, 0, 38}]
  • PARI
    for(n=0,50, print1((n^4 - 5*n^2 + 4*n)/4, ", ")) \\ G. C. Greubel, Aug 07 2018
    

Formula

a(n) = (n^4 - 5*n^2 + 4*n)/4 = n*(n - 1)*(n^2 + n - 4)/4 = A000217(n-1)*A034856(n-1), which shows the formula is an integer.
G.f.: x^2 * (1 + 7*x - 2*x^2) / (1 - x)^5. - Michael Somos, Mar 21 2014
a(n) = A172225(n)/2. - R. J. Mathar, Jan 09 2018

A381854 Triangle read by rows: T(n, k) is the number of invertible n X n matrices over GF(2) that can be optimally row-reduced in k steps, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 6, 24, 51, 60, 24, 2, 1, 12, 96, 542, 2058, 5316, 7530, 4058, 541, 6, 1, 20, 260, 2570, 19680, 117860, 540470, 1769710, 3571175, 3225310, 736540, 15740, 24, 1, 30, 570, 8415, 101610, 1026852, 8747890, 61978340, 355193925, 1561232840, 4753747050, 8111988473, 4866461728, 437272014, 949902, 120
Offset: 0

Views

Author

Keywords

Comments

Using transvections as the generating set of the matrix group, this is the number of inequivalent minimal words in k generators; the number of elements at distance k from the identity in the corresponding Cayley graph.
Also the number of different elements that can be represented by minimal quantum circuits of k CNOT gates on n qubits.

Examples

			Triangle begins:
   n\k  0    1    2    3    4    5    6    7    8    9
   0:   1
   1:   1
   2:   1    2    2    1
   3:   1    6   24   51   60   24    2
   4:   1   12   96  542 2058 5316 7530 4058  541    6
   ...
For n = 2, k = 1, the two matrices are [[1, 1], [0, 1]] and [[1, 0], [1, 1]].
For n = 2, k = 2, the two matrices are [[1, 1], [1, 0]] and [[0, 1], [1, 1]].
For n = 2, k = 3, the only matrix is [[0, 1], [1, 0]].
		

Crossrefs

Cf. A002378 (column 1), A172225 (column 2), A002884 (row sums).

Formula

T(n, 0) = 1.
T(n, 1) = n^2 - n.
T(n, 2) = (1/2)*(n^4 - 5*n^2 + 4*n).
T(n, 3) = (1/6)*(n^6 + 3*n^5 - 9*n^4 - 63*n^3 + 179*n^2 - 111*n).
Sum_{k>=0} T(n,k) = A002884(n).
Previous Showing 11-13 of 13 results.