A173986
a(n) = numerator((Psi(1, 2/3) - Psi(1, n+2/3))/9), where Psi(1, z) is the Trigamma function.
Original entry on oeis.org
0, 1, 29, 489, 60769, 3026081, 884023809, 890877733, 474015890357, 80471258049933, 67921427083803253, 1089963588226225073, 1092655876391630769, 395273284628034202009, 665644988593672027490729
Offset: 0
The rationals a(n)/A173987(n) begin 0/1, 1/4, 29/100, 489/1600, 60769/193600, 3026081/9486400, 884023809/2741569600, 890877733/2741569600, ... - _Wolfdieter Lang_, Nov 12 2017
Cf.
A006752,
A120268,
A173945,
A173947,
A173948,
A173949,
A173953,
A173955,
A173973,
A173982,
A173983,
A173984,
A173985,
A294967.
-
[0] cat [Numerator((&+[2/(3*k+2)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
-
r := n -> (Psi(1, 2/3) - Psi(1, n+2/3))/9:
seq(numer(simplify(r(n))), n=0..14); # Peter Luschny, Nov 13 2017
-
Table[Numerator[FunctionExpand[(4*Pi^2/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3])/9]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[Sum[2/(3*k + 2)^2, {k, 0, n - 2}], {n, 1, 20}]] (* G. C. Greubel, Aug 23 2018 *)
-
for(n=1,20, print1(numerator(sum(k=0,n-2, 2/(3*k+2)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
A173985
a(n) = numerator of (Zeta(0,2,2/3) - Zeta(0,2,n+2/3)), where Zeta is the Hurwitz Zeta function.
Original entry on oeis.org
0, 9, 261, 4401, 546921, 27234729, 7956214281, 8017899597, 4266143013213, 724241322449397, 611292843754229277, 9809672294036025657, 9833902887524676921, 3557459561652307818081, 5990804897343048247416561
Offset: 0
Cf.
A006752,
A120268,
A173945,
A173947,
A173948,
A173949,
A173953,
A173955,
A173973,
A173982,
A173983,
A173984.
-
[0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
-
A173985 := proc(n) add( 1/(2/3+i)^2,i=0..n-1) ; numer(%) ; end proc: seq(A173985(n),n=0..20) ; # R. J. Mathar, Apr 22 2010
-
Table[FunctionExpand[4*(Pi^2)/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
-
for(n=0,20, print1(numerator(9*sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
A360945
a(n) = numerator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.
Original entry on oeis.org
1, 2, 10, 244, 554, 202084, 2162212, 1594887848, 7756604858, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 105453443486621462355224, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 0
a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 244 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
Cf.
A000364,
A046982,
A173945,
A173947,
A173948,
A173949,
A173953,
A173954,
A173955,
A173982,
A173983,
A173984,
A173987,
A360966,
A361007,
A361007.
-
Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 1, 25}] // FunctionExpand // Numerator (* Vaclav Kotesovec, Feb 27 2023 *)
t[0, 1] = 1; t[0, _] = 0;
t[n_, k_] := t[n, k] = (k-1) t[n-1, k-1] + (k+1) t[n-1, k+1];
a[n_] := Sum[t[2n, k]/(2n)!, {k, 0, 2n+1}] // Numerator;
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 15 2023 *)
a[n_] := SeriesCoefficient[Tan[x+Pi/4], {x, 0, 2n}] // Numerator;
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 15 2023 *)
-
a(n) = numerator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023
A360966
a(n) = denominator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.
Original entry on oeis.org
1, 1, 3, 45, 63, 14175, 93555, 42567525, 127702575, 97692469875, 371231385525, 2143861251406875, 2275791174570375, 48076088562799171875, 95646113035463615625, 3952575621190533915703125, 1441527579493018251609375, 68739242628124575327993046875, 333120945043988326589504765625
Offset: 0
a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 45 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
Cf.
A000364,
A046982,
A173945,
A173947,
A173948,
A173949,
A173953,
A173954,
A173955,
A173982,
A173983,
A173984,
A173987,
A361007.
-
Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 0, 25}] // FunctionExpand // Denominator
(* Second program: *)
a[n_] := SeriesCoefficient[Tan[x + Pi/4], {x, 0, 2n}] // Denominator;
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023 *)
-
a(n) = denominator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023
A361007
a(n) = numerator of (zeta(2*n,1/4) + zeta(2*n,3/4))/Pi^(2*n) where zeta is the Hurwitz zeta function.
Original entry on oeis.org
0, 2, 8, 64, 2176, 31744, 2830336, 178946048, 30460116992, 839461371904, 232711080902656, 39611984424992768, 955693069653508096, 1975371841521663868928, 1124025625663103358205952, 369906947004953565463576576, 278846808228005417477465964544
Offset: 0
tan(2*x) = 2*x + (8/3)*x^3 + (64/15)*x^5 + (2176/315)*x^7 + (31744/2835)*x^9 + ...
Cf.
A000364,
A046982,
A173945,
A173947,
A173948,
A173949,
A173953,
A173954,
A173955,
A173982,
A173983,
A173984,
A173987,
A360945,
A360966.
-
Table[(Zeta[2*n, 1/4] + Zeta[2*n, 3/4])/Pi^(2*n), {n, 0, 25}] //
FunctionExpand // Numerator
Table[4^(2 k) (2^(2 k) - 1) (-1)^(k + 1) BernoulliB[2 k]/(2 (2 k)!), {k, 0, 25}] // Numerator
-
my(x='x+O('x^50), v = Vec(tan(2*x)/x)); apply(numerator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Apr 09 2023
Comments