A247268
Number of tilings of a 5 X n rectangle using n pentominoes of shapes Y, U, X.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 1, 0, 4, 5, 38, 22, 13, 90, 144, 457, 408, 386, 1267, 2230, 5912, 6481, 7098, 18896, 35433, 79634, 101232, 127501, 288304, 546652, 1113907, 1560356, 2148298, 4408181, 8335234, 15954116, 23827541, 35011426, 67591204, 126376945, 232719926
Offset: 0
a(3) = 1, a(5) = 2:
._____. ._________. ._________.
| ._. | |_. .___| | | |___. ._|
|_| |_| | |_| |_. | | ._| |_| |
|_. ._| , | |_. ._| | | |_. ._| |
| |_| | | ._|_| |_| |_| |_|_. |
|_____| |_|_______| |_______|_| .
-
gf:= -(x^40 +12*x^39 +36*x^38 -5*x^36 -2*x^35 +12*x^34 +54*x^33 +4*x^32 -21*x^31 -23*x^30 +4*x^29 +20*x^28 +4*x^27 -4*x^25 -7*x^24 -6*x^23 -3*x^22 +33*x^21 -7*x^20 -10*x^19 -12*x^18 -9*x^17 +12*x^16 +16*x^15 +3*x^14 -2*x^13 -2*x^12 -2*x^11 -3*x^10 +5*x^9 -2*x^6 -7*x^5 -x^4 +1) /
(x^43 +12*x^42 +36*x^41 -3*x^40 -29*x^39 -58*x^38 +12*x^37 +67*x^36 +4*x^35 -123*x^34 -99*x^33 +8*x^32 +23*x^31 -145*x^30 -52*x^29 -52*x^28 -35*x^27 -112*x^26 -99*x^25 -28*x^24 -7*x^23 -15*x^22 -99*x^21 -42*x^20 +22*x^19 +36*x^18 +26*x^17 -4*x^16 +6*x^15 +31*x^14 +5*x^13 +11*x^12 +14*x^11 +23*x^10 -5*x^9 -7*x^8 -x^7 +2*x^6 +9*x^5 +x^4 +x^3 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..60);
A247706
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape P; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 3, 0, 2, 16, 20, 20, 0, 135, 204, 140, 16, 6, 944, 1432, 1164, 296, 170, 0, 4814, 8796, 8452, 4068, 1708, 92, 20, 26435, 58656, 66994, 41648, 17494, 2700, 762, 0, 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62, 978044, 2783560, 3836254, 3107308, 1696312, 609772, 172724, 18220, 3160, 0
Offset: 0
T(2,2) = 2:
.___. .___.
| | | |
| ._| |_. |
|_| | | |_|
| | | |
|___| |___| .
Triangle T(n,k) begins:
00 : 1;
01 : 1, 0;
02 : 3, 0, 2;
03 : 16, 20, 20, 0;
04 : 135, 204, 140, 16, 6;
05 : 944, 1432, 1164, 296, 170, 0;
06 : 4814, 8796, 8452, 4068, 1708, 92, 20;
07 : 26435, 58656, 66994, 41648, 17494, 2700, 762, 0;
08 : 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62;
Even bisection of main diagonal gives
A247076.
A247711
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape X; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 1, 5, 55, 1, 493, 8, 3930, 76, 27207, 734, 9, 207118, 7414, 157, 1622723, 71986, 2064, 8, 12544364, 638499, 22232, 259, 95912510, 5558790, 222964, 3898, 50, 732066083, 47971603, 2179607, 49537, 948, 8, 5616480627, 410502410, 20604626, 564498, 13889, 180
Offset: 0
T(3,1) = 1:
._____.
| ._. |
|_| |_|
|_. ._|
| |_| |
|_____|
.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 5;
03 : 55, 1;
04 : 493, 8;
05 : 3930, 76;
06 : 27207, 734, 9;
07 : 207118, 7414, 157;
08 : 1622723, 71986, 2064, 8;
09 : 12544364, 638499, 22232, 259;
10 : 95912510, 5558790, 222964, 3898, 50;
A264812
Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, I, X.
Original entry on oeis.org
1, 1, 3, 5, 13, 52, 123, 366, 909, 2444, 7108, 19157, 53957, 146826, 400704, 1115852, 3059907, 8475420, 23369304, 64225984, 177572352, 488839323, 1349102071, 3722419367, 10255126169, 28303059509, 78013005366, 215160477217, 593488173404, 1636220978049
Offset: 0
a(4) = 13:
._______. ._______. ._______. ._______.
| | | | | | | | | | | | | ._| |
| | | | | | ._| ._| | ._| | | |___| |
| | | | | |_| |_| | |_| | | | | |___|
| | | | | (1) | | | (4) | | | | (6) | ._| | (2)
|_|_|_|_| |___|___| |_ _|_|_| |_|_____| .
a(5) = 52:
._________.
| |_. |
| ._| |___|
|_|_ _| |
| |_| | (2) ...
|_____|___| .
A278330
Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.
Original entry on oeis.org
1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
Offset: 0
a(2) = 2, a(3) = 1:
.___. .___. ._____.
| | | | | ._. |
| ._| |_. | |_| |_|
|_| | | |_| |_ _|
| | | | | |_| |
|___| |___| |_____| .
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,8,4,21,-8,-4,-6,0,-16,-8).
Cf.
A079978,
A174249,
A233427,
A234312,
A234931,
A247124,
A247268,
A247443,
A249762,
A264765,
A264812.
-
a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
[-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n.
<<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]:
seq(a(n), n=0..35);
A278456
Number of tilings of a 5 X n rectangle using pentominoes of any shape and monominoes.
Original entry on oeis.org
1, 2, 50, 1954, 56864, 1532496, 42238426, 1178422563, 32890293494, 917103556607, 25552076570350, 711923354658732, 19838824712825618, 552851181380560869, 15406086995815163663, 429312063890812931103, 11963383230714027535776, 333377000620725693771782
Offset: 0
a(1) = 2:
._. ._.
|_| | |
|_| | |
|_| | |
|_| | |
|_| |_| .
A077909
Expansion of 1/((1-x)*(1+x+x^2+2*x^3)).
Original entry on oeis.org
1, 0, 0, -1, 2, 0, 1, -4, 4, -1, 6, -12, 9, -8, 24, -33, 26, -40, 81, -92, 92, -161, 254, -276, 345, -576, 784, -897, 1266, -1936, 2465, -3060, 4468, -6337, 7990, -10588, 15273, -20664, 26568, -36449, 51210, -67896, 89585, -124108, 170316, -225377, 303278, -418532, 566009, -754032, 1025088
Offset: 0
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n.
<<1, 0, 0, -1>>)[1, 1]:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 20 2013
-
CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* Jean-François Alcover, Jun 08 2015, after Arkadiusz Wesolowski *)
-
Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ Joerg Arndt, Aug 28 2013
A174250
Number of tilings of a 6 X n rectangle with n hexominoes of any shape.
Original entry on oeis.org
1, 1, 6, 132, 2369, 33344, 451206, 5850115, 81459922, 1144259389, 15946621499
Offset: 0
Bob Harris (me13013(AT)gmail.com), Mar 13 2010
A174251
Number of tilings of a 7 X n rectangle with n heptominoes of any shape.
Original entry on oeis.org
1, 1, 7, 259, 9525, 270827, 6633399, 158753814, 3825111851, 96608374284, 2446223788303
Offset: 0
Bob Harris (me13013(AT)gmail.com), Mar 13 2010
A174252
Number of tilings of an 8 X n rectangle with n octominoes of any shape.
Original entry on oeis.org
1, 1, 8, 546, 39731, 2152050, 99697633, 4292655082, 187497290034, 8378760802160, 385296986628990
Offset: 0
Bob Harris (me13013(AT)gmail.com), Mar 13 2010
Comments