cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A179876 Numbers h such that h and h-1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.

Original entry on oeis.org

2, 7, 11, 23, 47, 59, 66, 70, 78, 83, 107, 130, 167, 179, 186, 195, 211, 222, 227, 238, 255, 263, 266, 310, 322, 331, 347, 359, 366, 383, 399, 418, 438, 455, 463, 467, 470, 474, 479, 483, 494, 498, 503
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Corresponding values of numbers h-1 see A179875.
Numbers h such that A175505(h) = A175505(h-1).
Numbers h such that A175506(h) = A175506(h-1).
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Examples

			For n=3: a(3) = 11; B(11) = A175505(11) / A175506(11) = 7, B(10) = A175505(10) / A175506(10) = 7.
		

Crossrefs

Programs

  • Maple
    antiHMeanGcd := proc(h)
            option remember;
            local a023896,a053818,k ;
            a023896 := 0 ;
            a053818 := 0 ;
            for k from 1 to h do
                    if igcd(k,h) = 1 then
                            a023896 := a023896+k ;
                            a053818 := a053818+k^2 ;
                    end if;
            end do:
            a053818/a023896 ;
    end proc:
    n := 1:
    for h from 2 do
            if antiHMeanGcd(h) = antiHMeanGcd(h-1) then
                    printf("%d %d\n",n,h) ;
                    n := n+1 ;
            end if;
    end do: # R. J. Mathar, Sep 26 2013
  • Mathematica
    hmax = 1000;
    antiHMeanGcd[h_] := antiHMeanGcd[h] = Module[{num = 0, den = 0, k}, For[k = 1, k <= h, k++, If[GCD[k, h] == 1, den += k; num += k^2]]; num/den];
    Reap[n = 1; For[h = 2, h <= hmax, h++, If[antiHMeanGcd[h] == antiHMeanGcd[h - 1], Sow[h]; n++]]][[2, 1]] (* Jean-François Alcover, Mar 23 2020, after R. J. Mathar *)

A179872 Numbers h such that antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 is not integer.

Original entry on oeis.org

3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 86, 87, 88
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Numbers h such that B(h) = A053818(h) / A023896(h) = A175505(h) / A175506(h) is not integer.
Numbers h such that A175506(h) > 1.
Complement of A179871.
Union of A007645 and A179891.

Examples

			a(6) = 9 because B(9) = A053818(9) / A023896(9) = 159/27 = 53/9 (not integer).
		

Crossrefs

Programs

  • PARI
    isok(k) = {my(f = factor(k)); if(k == 1, 0, denominator(2*k/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f)) > 1);} \\ Amiram Eldar, May 25 2025

Extensions

More terms from Amiram Eldar, May 25 2025

A179873 Corresponding values of antiharmonic means B(h) to numbers h from A179871 (numbers h such that antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 is an integer).

Original entry on oeis.org

1, 1, 3, 7, 7, 11, 15, 15, 19, 23, 27, 31, 31, 35, 37, 39, 39, 47, 55, 55, 57, 59, 61, 63, 67, 71, 71, 73, 75, 77, 79, 87, 89, 91, 95, 97, 99, 111, 111, 113, 115, 119, 119, 121, 125, 127, 131, 135, 137, 143, 145, 151, 151, 153, 155, 157, 159, 165, 167, 169, 171
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Conjecture: nondecreasing sequence of odd numbers.

Examples

			a(6) = A175505(A179871(6)) = A175505(17) = 11 = B(17).
		

Crossrefs

Programs

  • Mathematica
    B[n_] := Plus @@ ((ks = Select[Range[n], GCD[n, #] == 1 &])^2)/Plus @@ ks; Select[B /@ Range[215], IntegerQ] (* Ivan Neretin, May 22 2015 *)
  • PARI
    ah(n) = {my(f = factor(n)); if(n == 1, 1, 2*n/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f));}
    list(lim) = {my(m); for(k = 1, lim, m = ah(k); if(denominator(m) == 1, print1(m, ", ")));} \\ Amiram Eldar, May 25 2025

Formula

a(n) = A053818(A179871(n)) / A023896(A179871(n)) = A175505(A179871(n)).

A179883 List of twin numbers (h, h+1) such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.

Original entry on oeis.org

1, 2, 6, 7, 10, 11, 22, 23, 46, 47, 58, 59, 65, 66, 69, 70, 77, 78, 82, 83, 106, 107, 129, 130, 166, 167, 178, 179, 185, 186, 194, 195, 210, 211, 221, 222, 226, 227, 237, 238, 254, 255, 262, 263, 265, 266, 309, 310, 321, 322, 330, 331, 346, 347, 358, 359, 365
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h). Union of A179875 and A179876.

Crossrefs

Formula

a(2*n-1) = A179875(n), a(2*n) = A179876(n) = A179875(n)+1. - Amiram Eldar, May 24 2025

A179884 List of twin numbers (h, h+1) such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 and simultaneously this mean is an integer.

Original entry on oeis.org

1, 2, 10, 11, 22, 23, 46, 47, 58, 59, 82, 83, 106, 107, 166, 167, 178, 179, 226, 227, 262, 263, 265, 266, 346, 347, 358, 359, 382, 383, 454, 455, 466, 467, 469, 470, 478, 479, 493, 494, 502, 503, 505, 506, 517, 518, 562, 563, 586, 587, 589, 590, 718, 719, 781, 782
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Subsequence of A179883 and A179871.
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).
Corresponding values of antiharmonic mean B(a(n)) are in A179886.

Crossrefs

Formula

a(2*n-1) = A179877(n), a(2*n) = A179878(n) = A179877(n)+1. - Amiram Eldar, May 24 2025

Extensions

More terms from Amiram Eldar, May 25 2025

A175506 Denominators of the antiharmonic means B of numbers k such that gcd(k, n) = 1 for numbers n >= 1 and k < n.

Original entry on oeis.org

1, 1, 3, 2, 1, 3, 3, 4, 9, 1, 1, 6, 3, 3, 3, 8, 1, 9, 3, 2, 3, 1, 1, 12, 5, 3, 27, 6, 1, 3, 3, 16, 3, 1, 3, 18, 3, 3, 3, 4, 1, 3, 3, 2, 9, 1, 1, 24, 21, 5, 3, 6, 1, 27, 1, 12, 3, 1, 1, 6, 3, 3, 9, 32, 3, 3, 3, 2, 3, 3, 1, 36, 3, 3, 15, 6, 3, 3, 3, 8, 81, 1, 1, 6, 1, 3, 3, 4, 1, 9, 1, 2, 3, 1, 3, 48, 3, 21, 9
Offset: 1

Views

Author

Jaroslav Krizek, May 31 2010

Keywords

Comments

See A175505 - numerators of the antiharmonic means B of numbers k such that gcd(k, n) = 1 for numbers n >= 1 and k < n where B = A053818(n) / A023896(n) = A175505(n) / a(n).

Programs

  • Mathematica
    f[n_] := 2Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); f[1] = 1; Denominator@ Array[f, 80] (* Robert G. Wilson v, Jul 01 2010 *)

Formula

a(n) = A175505(n) * A023896(n) / A053818(n).

Extensions

More terms from Robert G. Wilson v, Jul 01 2010

A179886 Corresponding values of antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 for numbers h from A179884.

Original entry on oeis.org

1, 1, 7, 7, 15, 15, 31, 31, 39, 39, 55, 55, 71, 71, 111, 111, 119, 119, 151, 151, 175, 175, 177, 177, 231, 231, 239, 239, 255, 255, 303, 303, 311, 311, 313, 313, 319, 319, 329, 329, 335, 335, 337, 337, 345, 345, 375, 375, 391, 391, 393, 393, 479, 479, 521, 521
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Crossrefs

Formula

a(2*n-1) = a(2*n) = A179882(n). - Amiram Eldar, May 26 2025

Extensions

More terms from Amiram Eldar, May 26 2025

A034934 Numbers k such that (3*k + 1)/2 is prime.

Original entry on oeis.org

1, 3, 7, 11, 15, 19, 27, 31, 35, 39, 47, 55, 59, 67, 71, 75, 87, 91, 99, 111, 115, 119, 127, 131, 151, 155, 159, 167, 171, 175, 179, 187, 195, 207, 211, 231, 235, 239, 255, 259, 267, 279, 287, 295, 299, 307, 311, 319, 327, 335, 339, 347, 371, 375, 379, 391
Offset: 1

Views

Author

Keywords

Comments

Related to hyperperfect numbers of a certain form.
The formula by Jaroslav Krizek is explained as follows: If p = (3n+1)/2 is prime, then it is an integer, and p must be of the form p = 3m-1, i.e., p = A003627(k). On the other hand, if p = A003627(k), then all k < p are coprime to p, so we have B(p) = (Sum_{kM. F. Hasler, Nov 29 2010

Examples

			a(6) = 19 because for A003627(6) = 29, B(29) = A053818(29)/A023896(29) = 7714/406 = 19. Cf. A179871-A179891, A003627, A007645. - _Jaroslav Krizek_, Aug 01 2010
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..400 by 2] | IsPrime((3*n+1) div 2) ];
    
  • Mathematica
    Select[Range[500], PrimeQ[(3# + 1)/2] &] (* Harvey P. Dale, Jan 15 2011 *)
  • PARI
    is(n)=isprime((3*n+1)/2) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = A175505(A003627(n)). - Jaroslav Krizek, Aug 01 2010

Extensions

Corrected by Vincenzo Librandi, Mar 24 2010
Previous Showing 11-18 of 18 results.