cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A175904 Numbers m for which the set of prime divisors of m^2-1 is unique.

Original entry on oeis.org

2, 3, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 27, 28, 30, 32, 33, 36, 38, 39, 40, 42, 44, 45, 46, 47, 48, 50, 52, 54, 57, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 93, 94, 95, 96, 98, 99
Offset: 1

Views

Author

Artur Jasinski, Oct 12 2010, Oct 21 2010

Keywords

Comments

Complement of A175903. A proof for the presence of the first 63 terms (for which the largest prime divisor is < 100) follows along the lines of the comment in A175607.

Examples

			The unique prime factor sets are {3} (m=2), {2} (m=3), {5,7} (m=6), {3,7} (m=8), {2,5} (m=9) etc.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; bb = {}; cc = {}; ff = {}; Do[k = n^2 - 1; kk = FactorInteger[k]; b = {}; Do[AppendTo[b, kk[[m]][[1]]], {m, 1, Length[kk]}]; dd = Position[aa, b]; If[dd == {}, AppendTo[cc, n]; AppendTo[aa, b], AppendTo[ff, n]; AppendTo[bb, cc[[dd[[1]][[1]]]]]], {n, 2, 1000000}]; jj=Table[n,{2,99}]; ss=Union[bb,ff]; Take[Complement[jj,ss],63] (*Artur Jasinski*)

A181452 Numbers k such that 17 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

16, 33, 35, 50, 67, 69, 101, 103, 118, 120, 169, 188, 239, 271, 307, 339, 441, 511, 545, 577, 749, 883, 1121, 1189, 1376, 1429, 1665, 1871, 2024, 2177, 2311, 2449, 2549, 3401, 4115, 4861, 4999, 5201, 9827, 11663, 24751, 28799, 57121, 62425, 74359, 388961, 672281
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 17.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(7) = 672281; primepi(17) = 7.

Crossrefs

Programs

  • Magma
    [ n: n in [2..350000] | m eq 17 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..700000] | p mod (n^2-1) eq 0 and (D[#D] eq 17 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 24 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 700000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 17, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[680000], FactorInteger[#^2-1][[-1, 1]]==17&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 13, n/=p^valuation(n, p)); n>1 && 17^valuation(n, 17)==n \\ Charles R Greathouse IV, Jul 01 2013

A181453 Numbers k such that 19 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

18, 20, 37, 39, 56, 77, 113, 134, 151, 153, 170, 191, 246, 265, 305, 324, 341, 362, 379, 417, 419, 571, 626, 647, 664, 685, 721, 799, 911, 951, 989, 1025, 1616, 1937, 2431, 2661, 2889, 3041, 3079, 3212, 3457, 3970, 4751, 4863, 5851, 6271, 6499, 8399, 11551, 11857
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 19.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(8) = 23718421; primepi(19) = 8.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 19 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..24000000] | p mod (n^2-1) eq 0 and (D[#D] eq 19 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 24 2011
    
  • Mathematica
    jj=2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr ={};n = 2; While[n < 24000000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 19, AppendTo[rr, n]]]; n++ ]; rr
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==19&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 17, n/=p^valuation(n, p)); n>1 && 19^valuation(n, 19)==n \\ Charles R Greathouse IV, Jul 01 2013

A181455 Numbers k such that 29 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

28, 57, 59, 86, 115, 144, 146, 175, 231, 233, 289, 349, 376, 407, 436, 463, 494, 521, 579, 639, 666, 755, 811, 987, 1101, 1103, 1217, 1275, 1451, 1565, 1567, 1681, 2029, 2089, 2551, 2872, 2899, 3191, 3249, 3365, 4001, 4003, 4351, 4409, 4523, 4929, 5279
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 29.
Sequence is finite. For proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(10) = 354365441; primepi(29) = 10.

Crossrefs

Programs

  • Magma
    [ n: n in [2..6000] | m eq 29 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
    
  • Mathematica
    Select[Range[5600],FactorInteger[#^2-1][[-1,1]]==29&]  (* Harvey P. Dale, Feb 16 2011 *)
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 23, n/=p^valuation(n, p)); n>1 && 29^valuation(n, 29)==n \\ Charles R Greathouse IV, Jul 01 2013

A181457 Numbers k such that 37 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

36, 38, 73, 75, 149, 186, 221, 223, 260, 295, 369, 371, 406, 443, 482, 519, 593, 628, 776, 813, 815, 961, 1000, 1072, 1259, 1331, 1333, 1405, 1407, 1444, 1481, 1701, 1814, 1849, 1886, 1923, 1999, 2071, 2367, 2591, 2663, 2737, 2887, 2959, 3329, 3331, 3403
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 37.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(12) = 9447152318; primepi(37) = 12.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 37 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 37 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 37, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==37&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 31, n/=p^valuation(n, p)); n>1 && 37^valuation(n, 37)==n \\ Charles R Greathouse IV, Jul 01 2013

A181458 Numbers k such that 41 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

40, 81, 83, 122, 124, 163, 204, 206, 247, 286, 288, 329, 409, 491, 493, 573, 575, 737, 739, 778, 901, 944, 985, 1024, 1065, 1106, 1149, 1231, 1393, 1518, 1559, 1639, 1682, 2049, 2051, 2092, 2295, 2377, 2379, 2623, 2705, 2789, 3035, 3158, 3199, 3361, 3363
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 41.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(13) = 127855050751; primepi(41) = 13.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 41 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 41 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 41, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==41&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 37, n/=p^valuation(n, p)); n>1 && 41^valuation(n, 41)==n \\ Charles R Greathouse IV, Jul 01 2013

A181459 Numbers k such that 43 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

42, 44, 85, 87, 171, 173, 216, 257, 259, 300, 343, 386, 431, 474, 517, 560, 601, 687, 689, 730, 818, 859, 1074, 1117, 1119, 1289, 1291, 1332, 1420, 1549, 1633, 1721, 1805, 1891, 1977, 1979, 2108, 2321, 2495, 2665, 2667, 2751, 2753, 2794, 2925, 3095, 3484
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 43.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(14) = 842277599279; primepi(43) = 14.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 43 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 43 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 43, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==43&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 41, n/=p^valuation(n, p)); n>1 && 43^valuation(n, 43)==n \\ Charles R Greathouse IV, Jul 01 2013

A181460 Numbers k such that 47 is the largest prime factor of k^2-1.

Original entry on oeis.org

46, 48, 93, 95, 142, 187, 189, 281, 375, 377, 424, 469, 610, 657, 659, 704, 751, 753, 892, 988, 1033, 1035, 1082, 1174, 1223, 1270, 1364, 1409, 1597, 1599, 1691, 1693, 1926, 1973, 1975, 2022, 2069, 2161, 2255, 2351, 2443, 2584, 2727, 2913, 2915, 3009
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 47.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(15) = 2218993446251; primepi(47) = 15.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 47 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Mathematica
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==47&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 43, n/=p^valuation(n, p)); n>1 && 47^valuation(n, 47)==n \\ Charles R Greathouse IV, Jul 01 2013

A181461 Numbers k such that 53 is the largest prime factor of k^2-1.

Original entry on oeis.org

52, 54, 105, 107, 160, 211, 319, 370, 476, 529, 531, 584, 637, 741, 743, 847, 849, 900, 902, 953, 1059, 1220, 1273, 1324, 1377, 1379, 1483, 1538, 1644, 1695, 1801, 1803, 2015, 2174, 2278, 2386, 2437, 2543, 2651, 2755, 2861, 2969, 3073, 3181, 3497, 3499
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 53.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(16) = 2907159732049; primepi(53) = 16.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 53 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 53 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 53, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==53&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 47, n/=p^valuation(n, p)); n>1 && 53^valuation(n, 53)==n \\ Charles R Greathouse IV, Jul 01 2013

A181462 Numbers k such that 59 is the largest prime factor of k^2-1.

Original entry on oeis.org

58, 117, 119, 176, 235, 237, 296, 353, 471, 530, 532, 589, 591, 650, 766, 827, 945, 1002, 1061, 1063, 1179, 1297, 1299, 1535, 1592, 1594, 1651, 1769, 1828, 1887, 1889, 2066, 2184, 2241, 2243, 2300, 2302, 2479, 2536, 2774, 2951, 3126, 3244, 3305, 3421
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 59.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(17) = 41257182408961; primepi(59) = 17.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 59 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 59 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 59, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[10000],Max[Transpose[FactorInteger[#^2-1]][[1]]]==59&] (* Harvey P. Dale, Nov 13 2010 *)
  • PARI
    for(k=2,1e9,vecmax(factor(k^2-1)[,1])==59 & print1(k",")) \\ M. F. Hasler, Nov 13 2010
    
Previous Showing 11-20 of 42 results. Next