cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A103133 Decimal expansion of Dirichlet series L_{-7}(2).

Original entry on oeis.org

1, 1, 5, 1, 9, 2, 5, 4, 7, 0, 5, 4, 4, 4, 9, 1, 0, 4, 7, 1, 0, 1, 6, 9, 2, 3, 9, 7, 3, 2, 0, 5, 4, 9, 9, 6, 4, 7, 9, 7, 8, 2, 1, 4, 0, 4, 6, 8, 6, 5, 6, 6, 9, 1, 4, 0, 8, 3, 9, 6, 8, 6, 3, 6, 1, 6, 6, 1, 2, 4, 1, 6, 3, 4, 5, 4, 5, 9, 1, 5, 4, 7, 5, 5, 6, 6, 7, 7, 5, 1, 9, 0, 6, 2, 9, 7, 2, 1, 2, 5, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jan 23 2005

Keywords

Examples

			1.151925470544491047...
		

Crossrefs

Programs

  • Mathematica
    (PolyGamma[1, 1/7] + PolyGamma[1, 2/7] - PolyGamma[1, 3/7] + PolyGamma[1, 4/7] - PolyGamma[1, 5/7] - PolyGamma[1, 6/7])/49 // RealDigits[#, 10, 102]& // First

Formula

(Psi(1, 1/7) + Psi(1, 2/7) - Psi(1, 3/7) + Psi(1, 4/7) - Psi(1, 5/7) - Psi(1, 6/7))/49, where Psi(1, x) is the polygamma function of order 1.
Equals Sum_{n>=1} A175629(n)/n^2. - R. J. Mathar, Jan 15 2021
Equals 1/(Product_{p prime == 1, 2 or 4 (mod 7)} (1 - 1/p^2) * Product_{p prime == 3, 5 or 6 (mod 7)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

Extensions

Formula updated by Jean-François Alcover, Apr 01 2015

A322829 a(n) = Jacobi (or Kronecker) symbol (n/21).

Original entry on oeis.org

0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 21: repeat [0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1].
Also a(n) = Kronecker symbol (21/n).
This sequence is one of the three non-principal real Dirichlet characters modulo 21. The other two are Jacobi or Kronecker symbols {(n/63)} (or {(-63/n)}) and {(n/147)} (or {(-147/n)}).

Crossrefs

Cf. A035203 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017(d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), this sequence (d=21), A322796 (d=24).

Programs

  • Mathematica
    JacobiSymbol[Range[0, 100], 21] (* Paolo Xausa, Mar 19 2025 *)
  • PARI
    a(n) = kronecker(n, 21)

Formula

a(n) = 1 for n == 1, 4, 5, 16, 17, 20 (mod 21); -1 for n == 2, 8, 10, 11, 13, 19 (mod 21); 0 for n that are not coprime with 21.
Completely multiplicative with a(p) = a(p mod 21) for primes p.
a(n) = A102283(n)*A175629(n).
a(n) = a(n+21) = -a(n) for all n in Z.
From Chai Wah Wu, Feb 18 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-8) - a(n-9) + a(n-11) - a(n-12) for n > 11.
G.f.: -x*(x - 1)*(x + 1)*(x^8 - 2*x^7 + 2*x^6 + 2*x^2 - 2*x + 1)/(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1). (End)

A126837 Ramanujan numbers (A000594) read mod 7^2.

Original entry on oeis.org

1, 25, 7, 47, 28, 28, 14, 4, 37, 14, 22, 35, 21, 7, 0, 31, 28, 43, 0, 42, 0, 11, 46, 28, 32, 35, 28, 21, 23, 0, 0, 31, 7, 14, 0, 24, 46, 0, 0, 14, 14, 0, 37, 5, 7, 23, 42, 21, 0, 16, 0, 7, 36, 14, 28, 7, 0, 36, 42, 0, 14, 0, 28, 7, 0, 28, 15, 42, 28, 0, 2, 1, 14, 23, 28, 0, 14, 0, 39, 35, 46
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126836 (mod 7^1), this sequence (mod 7^2), A126838 (mod 7^3).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 49]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 49; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == n * sigma_9(n) (mod 7^2) if Legendre symbol (n,7) = A175629(n) = -1 (Kolberg, 1962). - Amiram Eldar, Jan 05 2025

A326919 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

Original entry on oeis.org

1, 1, 8, 7, 4, 1, 0, 4, 1, 1, 7, 2, 3, 7, 2, 5, 9, 4, 8, 7, 8, 4, 6, 2, 5, 2, 9, 7, 9, 4, 9, 3, 6, 3, 0, 2, 9, 9, 9, 2, 3, 3, 4, 6, 8, 6, 1, 6, 5, 0, 3, 5, 7, 5, 7, 5, 1, 5, 2, 0, 2, 3, 8, 5, 8, 5, 8, 4, 5, 8, 8, 9, 0, 9, 3, 4, 0, 7, 1, 5, 7, 5, 4, 8, 2, 0, 8, 9, 9, 9, 9
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A175629 and s = 1.

Examples

			1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...
		

Crossrefs

Cf. A175629.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

Programs

  • Mathematica
    RealDigits[Pi/Sqrt[7], 10, 102] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(7)

Formula

Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.
Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.
Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - Amiram Eldar, Dec 17 2023

A091395 a(n) = Product_{ p | n } (1 + Legendre(-7,p) ).

Original entry on oeis.org

1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); L := proc(n,N) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N,t1[i][1])),i=1..nops(t1)); end; [seq(L(n,-7),n=1..120)];
  • Mathematica
    a[n_] := Times@@ (1+KroneckerSymbol[-7, #]& /@ FactorInteger[n][[All, 1]]);
    Array[a, 105] (* Jean-François Alcover, Apr 08 2020 *)
  • PARI
    a(n)={my(f=factor(n)[,1]); prod(i=1, #f, 1 + kronecker(-7, f[i]))} \\ Andrew Howroyd, Jul 23 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7*sqrt(7)/(8*Pi) = 0.736897... . - Amiram Eldar, Oct 17 2022

A323378 Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 0, -1, 1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, -1, 1, -1, -1, 1, 0, 1, 0, -1, 0, -1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 0, -1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1
Offset: 1

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

If A215200 is arranged into a square array A215200(n,k) = kronecker symbol(n/k) with n >= 0, k >= 1, then this sequence gives the other half of the array.
Note that there is no such n such that the n-th row and the n-th column are the same.

Examples

			Table begins
  1,  1, -1,  1,  1, -1, -1,  1,  1,  1, ... ((-1/k) = A034947)
  1,  0,  1,  0, -1,  0, -1,  0,  1,  0, ... ((-2/k) = A188510)
  1, -1,  0,  1, -1,  0,  1, -1,  0,  1, ... ((-3/k) = A102283)
  1,  0, -1,  0,  1,  0, -1,  0,  1,  0, ... ((-4/k) = A101455)
  1, -1,  1,  1,  0, -1,  1, -1,  1,  0, ... ((-5/k) = A226162)
  1,  0,  0,  0,  1,  0,  1,  0,  0,  0, ... ((-6/k) = A109017)
  1,  1, -1,  1, -1, -1,  0,  1,  1, -1, ... ((-7/k) = A175629)
  1,  0,  1,  0, -1,  0, -1,  0,  1,  0, ... ((-8/k) = A188510)
  ...
		

Crossrefs

Cf. A215200.
The first rows are listed in A034947, A188510, A102283, A101455, A226162, A109017, A175629, A188510, ...

Programs

  • PARI
    T(n,k) = kronecker(-n, k)
Previous Showing 11-16 of 16 results.