cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A247389 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123456789)*.

Original entry on oeis.org

54, 13, 27, 54, 16, 27, 18, 10, 9, 54, 19, 27, 54, 19, 27, 18, 10, 9, 54
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

A247434 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123.....12)*.

Original entry on oeis.org

27, 25, 13, 24, 19, 24, 25, 13, 23, 24, 13, 12, 37, 25, 13, 24, 25, 24, 25
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Crossrefs

A247442 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...20)*.

Original entry on oeis.org

83, 80, 41, 21, 27, 80, 81, 40, 31, 40, 81, 80, 55, 41, 21, 80, 99, 40, 21
Offset: 2

Views

Author

Vincenzo Librandi, Sep 20 2014

Keywords

Crossrefs

A281006 a(n) = A000203(n) - A052928(n-1).

Original entry on oeis.org

1, 3, 2, 5, 2, 8, 2, 9, 5, 10, 2, 18, 2, 12, 10, 17, 2, 23, 2, 24, 12, 16, 2, 38, 7, 18, 14, 30, 2, 44, 2, 33, 16, 22, 14, 57, 2, 24, 18, 52, 2, 56, 2, 42, 34, 28, 2, 78, 9, 45, 22, 48, 2, 68, 18, 66, 24, 34, 2, 110, 2, 36, 42, 65, 20, 80, 2, 60, 28, 76, 2, 125, 2, 42, 50, 66, 20, 92, 2, 108, 41, 46, 2, 142, 24, 48, 34, 94, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2017

Keywords

Comments

a(n) = 2 iff n is an odd prime (A065091).
Has a symmetric representation as a narrow pyramid with holes, in the same way as A249351.

Examples

			A000203    A052928     a(n)
.   1    -    0    =    1
.   3    -    0    =    3
.   4    -    2    =    2
.   7    -    2    =    5
.   6    -    4    =    2
.  12    -    4    =    8
...
		

Crossrefs

Programs

Formula

a(n) = sigma(n) - 2*floor((n - 1)/2) = A000203(n) - 2*A004526(n-1).
a(n) = A048050(n) + A176059(n), n >= 2.

A247388 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (12345678)*.

Original entry on oeis.org

15, 16, 13, 16, 23, 16, 9, 8, 25, 16, 17, 16, 25, 16, 9, 8, 25, 16, 17
Offset: 2

Views

Author

Vincenzo Librandi, Sep 16 2014

Keywords

Crossrefs

A247435 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123....13)*.

Original entry on oeis.org

156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(156 + 39 x + 78 x^2 + 52 x^3 + 156 x^4 + 156 x^5 + 52 x^6 + 39 x^7 + 78 x^8 + 156 x^9 + 26 x^10 + 14 x^11 + 13 x^12)/(1 - x^13), {x, 0, 60}], x]
    PadRight[{},120,{156,39,78,52,156,156,52,39,78,156,26,14,13}] (* Harvey P. Dale, Mar 19 2021 *)

Formula

G.f.: x^2*(156 + 39*x + 78*x^2 + 52*x^3 + 156*x^4 + 156*x^5 + 52*x^6 + 39*x^7 + 78*x^8 + 156*x^9 + 26*x^10 + 14*x^11 + 13*x^12)/(1 - x^13).

A247436 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...14)*.

Original entry on oeis.org

43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Comments

Period 14, repeat [43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14].

Crossrefs

Programs

  • Magma
    &cat[[43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(43 + 84 x + 43 x^2 + 84 x^3 + 29 x^4 + 15 x^5 + 15 x^6 + 42 x^7 + 85 x^8 + 42 x^9 + 85 x^10 + 28 x^11 + 15 x^12 + 14 x^13)/(1 - x^14), {x, 0, 60}], x]

Formula

G.f.: -x^2*(43+84*x+43*x^2+84*x^3+29*x^4+15*x^5+15*x^6+42*x^7+85*x^8+42*x^9+85
*x^10+28*x^11+15*x^12+14*x^13) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+
x^2-x^3+x^4-x^5+x^6) ).

A247437 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...15)*.

Original entry on oeis.org

60, 61, 30, 31, 16, 60, 60, 31, 16, 30, 61, 60, 30, 16, 15, 60, 61, 30, 31
Offset: 2

Views

Author

Vincenzo Librandi, Sep 20 2014

Keywords

Crossrefs

A247438 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...16)*.

Original entry on oeis.org

31, 64, 21, 64, 55, 32, 25, 32, 59, 64, 29, 64, 63, 32, 17, 16, 65, 64, 33
Offset: 2

Views

Author

Vincenzo Librandi, Sep 20 2014

Keywords

Crossrefs

A247439 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...17)*.

Original entry on oeis.org

136, 272, 68, 272, 272, 272, 136, 136, 272, 272, 272, 68, 272, 136, 34, 18, 17, 136, 272
Offset: 2

Views

Author

Vincenzo Librandi, Sep 20 2014

Keywords

Crossrefs

Previous Showing 11-20 of 22 results. Next