cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A368235 Triangle read by rows: n-th row polynomial equals the numerator of the rational function (-1)^n*f(x) * (d/dx)^n (1/f(x)), where f(x) = sqrt(x + x^2).

Original entry on oeis.org

1, 1, 2, 3, 8, 8, 15, 54, 72, 48, 105, 480, 864, 768, 384, 945, 5250, 12000, 14400, 9600, 3840, 10395, 68040, 189000, 288000, 259200, 138240, 46080, 135135, 1018710, 3333960, 6174000, 7056000, 5080320, 2257920, 645120, 2027025, 17297280, 65197440, 142248960, 197568000, 180633600, 108380160, 41287680, 10321920
Offset: 0

Views

Author

Peter Bala, Dec 18 2023

Keywords

Comments

Unsigned row reverse of A123516.
The row polynomials also occur on repeated integration of 1/sqrt(x + x^2). See the example section.

Examples

			Triangle begins
 n\k |     0       1        2        3        4        5       6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0  |     1
  1  |     1       2
  2  |     3       8        8
  3  |    15      54       72       48
  4  |   105     480      864      768      384
  5  |   945    5250    12000    14400     9600     3840
  6  | 10395   68040   189000   288000   259200   138240   46080
 ...
Repeated integration of 1/f(x), where f(x) = sqrt(x + x^2):
Let I denote the integral operator h(x) -> Integral_{t = 0..x} h(t) dt.
Let g(x) = I(1/f(x)) = log(2*x + 1 + 2*f(x)). Then
(2^1 * 1!^2) * I^(2)(1/f(x)) = (2*x + 1)*g(x) - 2*f(x).
(2^2 * 2!^2) * I^(3)(1/f(x)) = (8*x^2 + 8*x + 3)*g(x) - 6*(2*x + 1)*f(x).
(2^3 * 3!^2) * I^(4)(1/f(x)) = (48*x^3 + 72*x^2 + 54*x + 15)*g(x) - 2*(44*x^2 + 44*x + 15)*f(x).
(2^4 * 4!^2) * I^(5)(1/f(x)) = (384*x^4 + 768*x^3 + 864*x^2 + 480*x + 105)*g(x) - 10*(2*x + 1)*(40*x^2 + 40*x + 21)*f(x).
		

Crossrefs

Cf. A001147 (column 1), 2*A161120 (column 2), A000165 (main diagonal) A014479 (first subdiagonal), 3*A286725 (second subdiagonal).

Programs

  • Maple
    # sequence in triangular form
    T := (n, k) -> n! * 2^(2*k-n) * binomial(n, k)*binomial(2*n-2*k, n-k):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;

Formula

T(n, k) = n! * 2^(2*k-n) * binomial(n, k) * binomial(2*n-2*k, n-k).
k*T(n, k) = (2*n^2)*T(n-1, k-1) for k >= 1 with T(n, 0) = (2*n - 1)!! = A001147(n).
T(n, 1) = 2*A161120(n).
T(n, n) = 2^n * n! = A000165(n); T(n+1, n) = 2^n * n! * (n+1)^2 = A014479(n);
T(n+2, n) = 3 * 2^(n-1)*(n+2)!*binomial(n+2, 2) = 3 * A286725(n).
More generally, T(n+r, n) = (2*r - 1)!! * A286724(n+r, r).
E.g.f.: Sum_{k >= 0} (1/2^k)*binomial(2*k, k)*t^k/(1 - 2*t*x)^(k+1) = 1 + (1 + 2*x)*t + (3 + 8*x + 8*x^2)*t^2/2! + (15 + 54*x + 72*x^2 + 48*x^3)*t^3/3! + ....
n-th row polynomial R(n, x) = (-2)^n*(x + x^2)^(n+1/2)*(d/dx)^n (1/sqrt(x + x^2)).
Recurrence for row polynomials:
R(n+1, x) = (2*x + 1)*(2*n + 1)*R(n, x) - 4*x*(x + 1)*n^2*R(n-1, x), with R(0, x) = 1.
R'(n, x) = 2*n^2 * R(n-1, x) for n >= 1.
Functional equation: R(n, -1 - x) = (-1)^n * R(n, x).
Conjecture: the zeros of the polynomial R(n, -x) lie on the vertical line Re(x) = 1/2 in the complex plane.
(-1)^n * x^n * R(n, (- 1 - x)/x) equals the n-th row polynomial of A123516.
(1 - x)^n * R(n, x/(1 - x)) equals the n-th row polynomial of A059366.
Let D denote the operator (1/x)*d/dx. Then D^(n+1)( arcsinh(x) ) = (-1)^n*R(n, x^2)/(x*sqrt(1 + x^2))^(2*n+1).
R(n, 1/2) = A331817(n); R(n, -1/2) = A177145(n+1);
(2^n) * R(n, 1/4) = A098461(n).
Alternating row sums R(n, -1) = (-1)^n * A001147(n).

A299018 Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P(n) = n*(x + 1)*P(n - 1) - (n - 2)^2*x*P(n - 2).

Original entry on oeis.org

1, 2, 2, 6, 11, 6, 24, 60, 60, 24, 120, 366, 501, 366, 120, 720, 2532, 4242, 4242, 2532, 720, 5040, 19764, 38268, 46863, 38268, 19764, 5040, 40320, 172512, 373104, 528336, 528336, 373104, 172512, 40320, 362880, 1668528, 3942108, 6237828, 7213761, 6237828, 3942108, 1668528, 362880
Offset: 1

Views

Author

F. Chapoton, Jan 31 2018

Keywords

Examples

			For n = 3, the polynomial is 6*x^2 + 11*x + 6.
The first few polynomials, as a table:
[1],
[2,    2],
[6,    11,    6],
[24,   60,    60,  24],
[120,  366,   501, 366, 120]
		

Crossrefs

Very similar to A298854.
Row sums are A277382(n-1) for n>0.
Leftmost and rightmost columns are A000142.
Alternating row sums are A177145.
Alternating row sum of row 2*n+1 is A001818(n).

Programs

  • Maple
    P:= proc(n) option remember; expand(`if`(n<2, n,
          n*(x+1)*P(n-1)-(n-2)^2*x*P(n-2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(P(n)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jan 31 2018
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        option remember;
        if n = 0 and k = 0 then
            1
        elif n > 0 and k >= 0 and k <= n then
            (n+1)*(A(n-1,k)+A(n-1,k-1))-(n-1)^2*A(n-2,k-1)
        else
            0
        end if;
    end proc: # Yu-Sheng Chang, Apr 14 2020
  • Mathematica
    P[n_] := P[n] = Expand[If[n < 2, n, n (x+1) P[n-1] - (n-2)^2 x P[n-2]]];
    row[n_] := CoefficientList[P[n], x];
    row /@ Range[12] // Flatten (* Jean-François Alcover, Dec 10 2019 *)
  • Sage
    @cached_function
    def poly(n):
        x = polygen(ZZ, 'x')
        if n < 1:
            return x.parent().zero()
        elif n == 1:
            return x.parent().one()
        else:
            return n * (x + 1) * poly(n - 1) - (n - 2)**2 * x * poly(n - 2)

Formula

P(0) = 0, P(1) = 1 and P(n) = n * (x + 1) * P(n - 1) - (n - 2)^2 * x * P(n - 2).
Previous Showing 11-12 of 12 results.