A186737
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} ((1 + x*A(x))^k - 1).
Original entry on oeis.org
1, 1, 3, 14, 82, 563, 4390, 38273, 370090, 3951524, 46436236, 598606795, 8431113021, 129134793211, 2139840753676, 38161937079832, 728817179712481, 14837170081079164, 320656534559643735, 7329984468062242588, 176662137501934534082, 4476371962949911027001, 118946746110478235868525
Offset: 0
G.f.: A(X) = 1 + x + 3*x^2 + 14*x^3 + 82*x^4 + 563*x^5 + 4390*x^6 +...
where
A(x) = 1 + ((1+x*A(x))-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1)*((1+x*A(x))^4-1) +...
Let q = 1+x*A(x), then:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
-
nmax = 22; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Sum[Product[ ((1 + x A[x])^k - 1), {k, 1, j}], {j, 0, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,prod(k=1,m,(1+x*A+x*O(x^n))^k - 1)));polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=local(A=1+x, q); for(i=1,n,q=(1+x*A +x*O(x^n)); A=sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1)))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A207434
L.g.f.: log( Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1) ) = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 3, 16, 103, 796, 7104, 71807, 810239, 10095145, 137686648, 2040943180, 32679948256, 562281127266, 10347659040127, 202849692259846, 4220573966037231, 92900793975348826, 2156973952747274733, 52686155932369860221, 1350605860832381895768, 36256679580764579284889
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 103*x^4/4 + 796*x^5/5 + 7104*x^6/6 + ...
where exponentiation yields the g.f. of A179525:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 197*x^5 + 1419*x^6 + 11966*x^7 + ...
such that, by definition,
exp(L(x)) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) + ...
-
Rest@With[{m = 25}, CoefficientList[Series[Log[Sum[Product[(1+x)^k -1, {k, j}], {j,0,m+2}]], {x,0,m}], x]*Range[0, m]] (* G. C. Greubel, Feb 05 2020 *)
-
{a(n)=n*polcoeff(log(sum(m=0, n, prod(k=1, m, (1+x)^k-1, 1+x*O(x^n)))), n)}
for(n=1,31,print1(a(n),","))
A207649
E.g.f.: Sum_{n>=0} 1/n! * Product_{k=1..n} ((1+x)^k - 1).
Original entry on oeis.org
1, 1, 2, 9, 60, 580, 7380, 119700, 2387280, 57211056, 1615703040, 52950688560, 1988213895360, 84622184412480, 4045503794492160, 215531680987022400, 12709328457015590400, 824497514996060505600, 58531734588587835294720, 4525412571041289046479360, 379428698362674642409728000, 34365923697307101211784908800, 3350637193653655199937586944000
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 580*x^5/5! +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1)/2! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)/3! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)*((1+x)^4-1)/4! +...
or, more explicitly,
A(x) = 1 + x + x^2*(2+x)/2! + x^3*(2+x)*(3+3*x+x^2)/3! + x^4*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)/4! + x^5*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)*(5+10*x+10*x^2+5*x^3+x^4)/5! +...
-
{a(n)=n!*polcoeff(sum(m=0,n,1/m!*prod(k=1,m,(1+x)^k-1 +x*O(x^n)) ),n)}
for(n=0,25,print1(a(n),", "))
A289316
The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row contains a nonzero entry.
Original entry on oeis.org
1, 1, 2, 8, 37, 219, 1557, 12994, 124427, 1344506, 16178891, 214522339, 3107144562, 48805300668, 826268787588, 14998055299920, 290550119360174, 5983278021430064, 130512410617529321, 3006012061455129053, 72900477505718600661
Offset: 0
a(3) = 8: The eight row-Fishburn matrices of size 3 with odd nonzero entries are
(3) /1 1\
\0 1/
/1 0 0\ /0 1 0\ /0 0 1\
|0 1 0| |0 1 0| |0 1 0|
\0 0 1/ \0 0 1/ \0 0 1/
/1 0 0\ /0 1 0\ /0 0 1\
|0 0 1| |0 0 1| |0 0 1|
\0 0 1/ \0 0 1/ \0 0 1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
C:= x -> x/(1 - x^2):
G:= add(mul( (1 + C(x))^k - 1, k=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
A182319
Triangular array: T(n,k) counts upper triangular matrices with entries from {0,1} having n 1's in total, with k 1's on the main diagonal and at least one nonzero entry in each row.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 7, 16, 9, 1, 33, 83, 64, 16, 1, 197, 530, 486, 180, 25, 1, 1419, 4026, 4144, 1930, 410, 36, 1, 11966, 35462, 39746, 21574, 5965, 812, 49, 1, 115575, 355368, 425762, 258426, 85589, 15477, 1456, 64, 1
Offset: 1
Triangle begins
.n\k.|...1.....2.....3.....4.....5
= = = = = = = = = = = = = = = = = =
..1..|...1
..2..|...1.....1
..3..|...2.....4.....1
..4..|...7....16.....9.....1
..5..|..33....83....64....16.....1
..6..|.197...530...486...180....25.....1
...
T(3,2) = 4: there is one 2x2 matrix and three 3x3 matrices with the specified properties:
........1..0..0.....0..1..0.....0..0..1..
1.1.....0..0..1.....0..1..0.....0..1..0..
0.1.....0..0..1.....0..0..1.....0..0..1..
-
\\ A(n) returns vector of n'th row.
A(n)={ my(rv=if(n==1, [1], vector(n)));
my(M=matrix(2,n,k,s,k==2&&s==1));
\\ M[k,s] is number of configs with s 1's with k+1 on diagonal.
for(r=2, n, M=matrix(r+1,n,k,s, sum(j=0, min(s-1,r-1), binomial(r-1,j) * (if(j>0&&k<=r, M[k,s-j]) + if(j1, M[k-1,s-j-1]))));
for(i=1, r, rv[i]+=M[i+1,n])); rv }
for(n=1,10,print(A(n))); \\ Andrew Howroyd, Oct 10 2017
Comments