cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A186737 G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} ((1 + x*A(x))^k - 1).

Original entry on oeis.org

1, 1, 3, 14, 82, 563, 4390, 38273, 370090, 3951524, 46436236, 598606795, 8431113021, 129134793211, 2139840753676, 38161937079832, 728817179712481, 14837170081079164, 320656534559643735, 7329984468062242588, 176662137501934534082, 4476371962949911027001, 118946746110478235868525
Offset: 0

Views

Author

Paul D. Hanna, Apr 23 2013

Keywords

Comments

This is an example of Peter Bala's identity (cf. A158690):
Sum_{n>=0} Product_{k=1..n} (q^k - 1) = Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) at q = 1+x*A(x).

Examples

			G.f.: A(X) = 1 + x + 3*x^2 + 14*x^3 + 82*x^4 + 563*x^5 + 4390*x^6 +...
where
A(x) = 1 + ((1+x*A(x))-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1)*((1+x*A(x))^4-1) +...
Let q = 1+x*A(x), then:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
		

Crossrefs

Cf. A179525.

Programs

  • Mathematica
    nmax = 22; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Sum[Product[ ((1 + x A[x])^k - 1), {k, 1, j}], {j, 0, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,prod(k=1,m,(1+x*A+x*O(x^n))^k - 1)));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x, q); for(i=1,n,q=(1+x*A +x*O(x^n)); A=sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1)))); polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = Sum_{n>=0} (1+x*A(x))^(-n^2) * Product_{k=1..n} ((1+x*A(x))^(2*k-1) - 1).
(2) A(x) = 1/(1 - (q-1)/(q - (q^2-1)/(q^2 - (q^3-1)/(q^3 - (q^4-1)/(q^4 - (q^5-1)/(q^5 -...)))))), a continued fraction, where q = 1+x*A(x).
a(n) ~ 6*sqrt(2) * exp(Pi^2/24) * 12^n * n! / Pi^(2*n+2). - Vaclav Kotesovec, May 05 2014

A207434 L.g.f.: log( Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1) ) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 16, 103, 796, 7104, 71807, 810239, 10095145, 137686648, 2040943180, 32679948256, 562281127266, 10347659040127, 202849692259846, 4220573966037231, 92900793975348826, 2156973952747274733, 52686155932369860221, 1350605860832381895768, 36256679580764579284889
Offset: 1

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 103*x^4/4 + 796*x^5/5 + 7104*x^6/6 + ...
where exponentiation yields the g.f. of A179525:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 197*x^5 + 1419*x^6 + 11966*x^7 + ...
such that, by definition,
exp(L(x)) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) + ...
		

Crossrefs

Cf. A179525 (exp).

Programs

  • Mathematica
    Rest@With[{m = 25}, CoefficientList[Series[Log[Sum[Product[(1+x)^k -1, {k, j}], {j,0,m+2}]], {x,0,m}], x]*Range[0, m]] (* G. C. Greubel, Feb 05 2020 *)
  • PARI
    {a(n)=n*polcoeff(log(sum(m=0, n, prod(k=1, m, (1+x)^k-1, 1+x*O(x^n)))), n)}
    for(n=1,31,print1(a(n),","))

Formula

L.g.f.: log( Sum_{n>=0} 1/(1+x)^(n^2) * Product_{k=1..n} ((1+x)^(2*k-1) - 1) ).

A207649 E.g.f.: Sum_{n>=0} 1/n! * Product_{k=1..n} ((1+x)^k - 1).

Original entry on oeis.org

1, 1, 2, 9, 60, 580, 7380, 119700, 2387280, 57211056, 1615703040, 52950688560, 1988213895360, 84622184412480, 4045503794492160, 215531680987022400, 12709328457015590400, 824497514996060505600, 58531734588587835294720, 4525412571041289046479360, 379428698362674642409728000, 34365923697307101211784908800, 3350637193653655199937586944000
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 580*x^5/5! +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1)/2! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)/3! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)*((1+x)^4-1)/4! +...
or, more explicitly,
A(x) = 1 + x + x^2*(2+x)/2! + x^3*(2+x)*(3+3*x+x^2)/3! + x^4*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)/4! + x^5*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)*(5+10*x+10*x^2+5*x^3+x^4)/5! +...
		

Crossrefs

Cf. A179525.

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,1/m!*prod(k=1,m,(1+x)^k-1 +x*O(x^n)) ),n)}
    for(n=0,25,print1(a(n),", "))

Extensions

a(21)-a(22) corrected by Andrew Howroyd, Feb 22 2018

A289316 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row contains a nonzero entry.

Original entry on oeis.org

1, 1, 2, 8, 37, 219, 1557, 12994, 124427, 1344506, 16178891, 214522339, 3107144562, 48805300668, 826268787588, 14998055299920, 290550119360174, 5983278021430064, 130512410617529321, 3006012061455129053, 72900477505718600661
Offset: 0

Views

Author

Peter Bala, Jul 24 2017

Keywords

Comments

A row-Fishburn matrix of size n is defined to be an upper-triangular matrix with nonnegative integer entries which sum to n and each row contains a nonzero entry. See A158691. Here we are considering row-Fishburn matrices where the nonzero entries are all odd.
The g.f. F(x) for primitive row_Fishburn matrices (i.e., row_Fishburn matrices with entries restricted to the set {0,1}), is F(x) = Sum_{n>=0} Product_{k=1..n} ( (1 + x)^k - 1 ). See A179525. Let C(x) = x/(1 - x^2) = x + x^3 + x^5 + x^7 + .... Then appplying Lemma 2.2.22 of Goulden and Jackson gives the g.f. for the present sequence as the composition F(C(x)).

Examples

			a(3) = 8: The eight row-Fishburn matrices of size 3 with odd nonzero entries are
(3) /1 1\
    \0 1/
/1 0 0\  /0 1 0\  /0 0 1\
|0 1 0|  |0 1 0|  |0 1 0|
\0 0 1/  \0 0 1/  \0 0 1/
/1 0 0\  /0 1 0\  /0 0 1\
|0 0 1|  |0 0 1|  |0 0 1|
\0 0 1/  \0 0 1/  \0 0 1/
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.

Crossrefs

Programs

  • Maple
    C:= x -> x/(1 - x^2):
    G:= add(mul( (1 + C(x))^k - 1, k=1..n),n=0..20):
    S:= series(G,x,21):
    seq(coeff(S,x,j),j=0..20);

Formula

G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( (1 + x/(1 - x^2))^k - 1 ).
a(n) ~ 12^(n+1) * n^(n + 1/2) / (exp(n + Pi^2/24) * Pi^(2*n + 3/2)). - Vaclav Kotesovec, Aug 31 2023

A182319 Triangular array: T(n,k) counts upper triangular matrices with entries from {0,1} having n 1's in total, with k 1's on the main diagonal and at least one nonzero entry in each row.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 7, 16, 9, 1, 33, 83, 64, 16, 1, 197, 530, 486, 180, 25, 1, 1419, 4026, 4144, 1930, 410, 36, 1, 11966, 35462, 39746, 21574, 5965, 812, 49, 1, 115575, 355368, 425762, 258426, 85589, 15477, 1456, 64, 1
Offset: 1

Views

Author

Peter Bala, Apr 24 2012

Keywords

Comments

This triangle is a refinement of A179525.

Examples

			Triangle begins
.n\k.|...1.....2.....3.....4.....5
= = = = = = = = = = = = = = = = = =
..1..|...1
..2..|...1.....1
..3..|...2.....4.....1
..4..|...7....16.....9.....1
..5..|..33....83....64....16.....1
..6..|.197...530...486...180....25.....1
...
T(3,2) = 4: there is one 2x2 matrix and three 3x3 matrices with the specified properties:
........1..0..0.....0..1..0.....0..0..1..
1.1.....0..0..1.....0..1..0.....0..1..0..
0.1.....0..0..1.....0..0..1.....0..0..1..
		

Crossrefs

Programs

  • PARI
    \\ A(n) returns vector of n'th row.
    A(n)={ my(rv=if(n==1, [1], vector(n)));
    my(M=matrix(2,n,k,s,k==2&&s==1));
    \\ M[k,s] is number of configs with s 1's with k+1 on diagonal.
    for(r=2, n, M=matrix(r+1,n,k,s, sum(j=0, min(s-1,r-1), binomial(r-1,j) * (if(j>0&&k<=r, M[k,s-j]) + if(j1, M[k-1,s-j-1]))));
      for(i=1, r, rv[i]+=M[i+1,n])); rv }
    for(n=1,10,print(A(n))); \\ Andrew Howroyd, Oct 10 2017

Formula

Let F(x,t) = 1 - (1-t)*(1 - (1-x*t) + (1-x*t)*(1-x^2*t) - (1-x*t)*(1-x^2*t)*(1-x^3*t) + ...). Then F(1+x,1+x*t) = 1 + x*t + (t+t^2)*x^2 + (2*t+4*t^2+t^3)*x^3 + (7*t+16*t^2+9*t^3+t^4)*x^4 + ... is conjecturally a generating function for the triangle.
T(n+1,1) = sum {k = 1..n} T(n,k); T(n+1,n) = n^2.
First column A179525. Row sums A179525.

Extensions

Terms a(23) and beyond from Andrew Howroyd, Oct 10 2017
Previous Showing 11-15 of 15 results.