cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A179876 Numbers h such that h and h-1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.

Original entry on oeis.org

2, 7, 11, 23, 47, 59, 66, 70, 78, 83, 107, 130, 167, 179, 186, 195, 211, 222, 227, 238, 255, 263, 266, 310, 322, 331, 347, 359, 366, 383, 399, 418, 438, 455, 463, 467, 470, 474, 479, 483, 494, 498, 503
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Corresponding values of numbers h-1 see A179875.
Numbers h such that A175505(h) = A175505(h-1).
Numbers h such that A175506(h) = A175506(h-1).
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Examples

			For n=3: a(3) = 11; B(11) = A175505(11) / A175506(11) = 7, B(10) = A175505(10) / A175506(10) = 7.
		

Crossrefs

Programs

  • Maple
    antiHMeanGcd := proc(h)
            option remember;
            local a023896,a053818,k ;
            a023896 := 0 ;
            a053818 := 0 ;
            for k from 1 to h do
                    if igcd(k,h) = 1 then
                            a023896 := a023896+k ;
                            a053818 := a053818+k^2 ;
                    end if;
            end do:
            a053818/a023896 ;
    end proc:
    n := 1:
    for h from 2 do
            if antiHMeanGcd(h) = antiHMeanGcd(h-1) then
                    printf("%d %d\n",n,h) ;
                    n := n+1 ;
            end if;
    end do: # R. J. Mathar, Sep 26 2013
  • Mathematica
    hmax = 1000;
    antiHMeanGcd[h_] := antiHMeanGcd[h] = Module[{num = 0, den = 0, k}, For[k = 1, k <= h, k++, If[GCD[k, h] == 1, den += k; num += k^2]]; num/den];
    Reap[n = 1; For[h = 2, h <= hmax, h++, If[antiHMeanGcd[h] == antiHMeanGcd[h - 1], Sow[h]; n++]]][[2, 1]] (* Jean-François Alcover, Mar 23 2020, after R. J. Mathar *)

A179879 Numbers h such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 and simultaneously this mean is not integer.

Original entry on oeis.org

6, 65, 69, 77, 129, 185, 194, 210, 221, 237, 254, 309, 321, 330, 365, 398, 417, 437, 462, 473, 482, 497, 533, 546, 554, 570, 573, 581, 597, 614, 626, 662, 669, 681, 690, 714, 753, 758, 785, 789, 794, 813, 858, 893, 905, 914, 966, 993, 1037, 1073, 1094, 1101, 1122
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010

Keywords

Comments

Subsequence of A179875 and A179883.
For corresponding values of numbers h+1 see A179880. - Jaroslav Krizek, Jul 31 2010

Crossrefs

Programs

  • PARI
    ah(n) = {my(f = factor(n)); if(n == 1, 1, 2*n/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f));}
    isok(k) = {my(ah1 = ah(k), ah2 = ah(k+1)); ah1 == ah2 && denominator(ah1) > 1;} \\ Amiram Eldar, May 24 2025

Formula

a(n) = A179880(n) - 1. - Jaroslav Krizek, Jul 31 2010

Extensions

a(36) corrected and more terms added by Amiram Eldar, May 24 2025

A179872 Numbers h such that antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 is not integer.

Original entry on oeis.org

3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 86, 87, 88
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Numbers h such that B(h) = A053818(h) / A023896(h) = A175505(h) / A175506(h) is not integer.
Numbers h such that A175506(h) > 1.
Complement of A179871.
Union of A007645 and A179891.

Examples

			a(6) = 9 because B(9) = A053818(9) / A023896(9) = 159/27 = 53/9 (not integer).
		

Crossrefs

Programs

  • PARI
    isok(k) = {my(f = factor(k)); if(k == 1, 0, denominator(2*k/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f)) > 1);} \\ Amiram Eldar, May 25 2025

Extensions

More terms from Amiram Eldar, May 25 2025

A179873 Corresponding values of antiharmonic means B(h) to numbers h from A179871 (numbers h such that antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 is an integer).

Original entry on oeis.org

1, 1, 3, 7, 7, 11, 15, 15, 19, 23, 27, 31, 31, 35, 37, 39, 39, 47, 55, 55, 57, 59, 61, 63, 67, 71, 71, 73, 75, 77, 79, 87, 89, 91, 95, 97, 99, 111, 111, 113, 115, 119, 119, 121, 125, 127, 131, 135, 137, 143, 145, 151, 151, 153, 155, 157, 159, 165, 167, 169, 171
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Conjecture: nondecreasing sequence of odd numbers.

Examples

			a(6) = A175505(A179871(6)) = A175505(17) = 11 = B(17).
		

Crossrefs

Programs

  • Mathematica
    B[n_] := Plus @@ ((ks = Select[Range[n], GCD[n, #] == 1 &])^2)/Plus @@ ks; Select[B /@ Range[215], IntegerQ] (* Ivan Neretin, May 22 2015 *)
  • PARI
    ah(n) = {my(f = factor(n)); if(n == 1, 1, 2*n/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f));}
    list(lim) = {my(m); for(k = 1, lim, m = ah(k); if(denominator(m) == 1, print1(m, ", ")));} \\ Amiram Eldar, May 25 2025

Formula

a(n) = A053818(A179871(n)) / A023896(A179871(n)) = A175505(A179871(n)).

A179874 Possible values of A179873(m) in increasing order, where A179873(m) = corresponding values of antiharmonic means to numbers from A179871 (numbers h such that antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 is an integer).

Original entry on oeis.org

1, 3, 7, 11, 15, 19, 23, 27, 31, 35, 37, 39, 47, 55, 57, 59, 61, 63, 67, 71, 73, 75, 77, 79, 87, 89, 91, 95, 97, 99, 111, 113, 115, 119, 121, 125, 127, 131, 135, 137, 143, 145, 151, 151, 153, 155, 157, 159, 165, 167
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Conjecture: a(n) = sequence of odd numbers.

Crossrefs

A179883 List of twin numbers (h, h+1) such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.

Original entry on oeis.org

1, 2, 6, 7, 10, 11, 22, 23, 46, 47, 58, 59, 65, 66, 69, 70, 77, 78, 82, 83, 106, 107, 129, 130, 166, 167, 178, 179, 185, 186, 194, 195, 210, 211, 221, 222, 226, 227, 237, 238, 254, 255, 262, 263, 265, 266, 309, 310, 321, 322, 330, 331, 346, 347, 358, 359, 365
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h). Union of A179875 and A179876.

Crossrefs

Formula

a(2*n-1) = A179875(n), a(2*n) = A179876(n) = A179875(n)+1. - Amiram Eldar, May 24 2025

A179884 List of twin numbers (h, h+1) such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1 and simultaneously this mean is an integer.

Original entry on oeis.org

1, 2, 10, 11, 22, 23, 46, 47, 58, 59, 82, 83, 106, 107, 166, 167, 178, 179, 226, 227, 262, 263, 265, 266, 346, 347, 358, 359, 382, 383, 454, 455, 466, 467, 469, 470, 478, 479, 493, 494, 502, 503, 505, 506, 517, 518, 562, 563, 586, 587, 589, 590, 718, 719, 781, 782
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Subsequence of A179883 and A179871.
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).
Corresponding values of antiharmonic mean B(a(n)) are in A179886.

Crossrefs

Formula

a(2*n-1) = A179877(n), a(2*n) = A179878(n) = A179877(n)+1. - Amiram Eldar, May 24 2025

Extensions

More terms from Amiram Eldar, May 25 2025

A179885 Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Original entry on oeis.org

6, 7, 65, 66, 69, 70, 77, 78, 129, 130, 185, 186, 194, 195, 210, 211, 221, 222, 237, 238, 254, 255, 309, 310, 321, 322, 330, 331, 365, 366, 398, 399, 417, 418, 437, 438, 462, 463, 473, 474, 482, 483, 497, 498, 533, 534, 546, 547, 554, 555, 570, 571, 573, 574, 581
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Crossrefs

Formula

a(2*n-1) = A179879(n), a(2*n) = A179880(n) = A179879(n) + 1. - Amiram Eldar, May 26 2025

Extensions

More terms from Amiram Eldar, May 26 2025

A179886 Corresponding values of antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 for numbers h from A179884.

Original entry on oeis.org

1, 1, 7, 7, 15, 15, 31, 31, 39, 39, 55, 55, 71, 71, 111, 111, 119, 119, 151, 151, 175, 175, 177, 177, 231, 231, 239, 239, 255, 255, 303, 303, 311, 311, 313, 313, 319, 319, 329, 329, 335, 335, 337, 337, 345, 345, 375, 375, 391, 391, 393, 393, 479, 479, 521, 521
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Crossrefs

Formula

a(2*n-1) = a(2*n) = A179882(n). - Amiram Eldar, May 26 2025

Extensions

More terms from Amiram Eldar, May 26 2025

A317510 Numbers (4p+1)/3 where p is a Sophie Germain prime p > 3.

Original entry on oeis.org

7, 15, 31, 39, 55, 71, 111, 119, 151, 175, 231, 239, 255, 311, 319, 335, 375, 391, 479, 559, 575, 591, 655, 679, 791, 855, 871, 879, 911, 959, 991, 1015, 1079, 1215, 1271, 1351, 1359, 1375, 1399, 1471, 1631, 1639, 1719, 1879, 1919, 1935, 1975, 1999, 2015, 2079, 2111, 2135, 2311, 2415, 2519, 2535, 2575, 2631
Offset: 1

Views

Author

Hilko Koning, Jul 30 2018

Keywords

Comments

It appears that this is a subsequence of A179882.
Define a set of consecutive positive odd numbers {1,......, (A077065(n)-1)} with n >= 3 and skip the number A077065(n)/2. Then the contraharmonic mean of that set gives the sequence. For example: ContraharmonicMean[{1, 3, 7, 9}] = 7, ContraharmonicMean[{1, 3, 5, 7, 9, 13, 15, 17, 19, 21}] = 15, ContraharmonicMean[{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31, 33, 35, 37,39, 41, 43, 45}] = 31. - Hilko Koning, Aug 28 2018
Let p be a Sophie Germain prime and define h = 2p + 1 a safe prime. Then the contraharmonic mean of the totatives of h is given by: CHM(h) = (Sum_{1 <= k < h, gcd(k, h) = 1} k^2) / (Sum_{1 <= k < h, gcd(k, h) = 1} k). Since h is prime, all integers k = 1, 2, ... , h - 1 are coprime to h. Then, CHM(h) = ((h - 1) * h * (2h-1) / 6) / ((h - 1) * h / 2). Thus CHM = (2h-1) / 3 = (4p+1) / 3. These values are integers precisely when p == 2 mod 3, which holds for all Sophie Germain primes, p >= 5. The resulting values for the sequence A317510, which is therefore a subsequence of A179882. - Hilko Koning, Jun 17 2025

Crossrefs

Subsequence of A004767, and of A004771.

Programs

  • GAP
    a:=[];; for p in [3..2000] do if IsPrime(p) and IsPrime(2*p+1) then Add(a,(4*p+1)/3); fi; od; a; # Muniru A Asiru, Aug 28 2018
  • Mathematica
    lst = {}; Do[If[PrimeQ[p] && PrimeQ[2 p + 1], AppendTo[lst, (4 p + 1)/3]], {p, 5, 2*10^3}]; lst
    4 (Select[Prime@Range[3, 300], PrimeQ[2 # + 1] &] + 1)/3 - 1 (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    lista(nn) = {forprime (p=5, nn, if (isprime(2*p+1), print1((4*p+1)/3, ", ")););} \\ Michel Marcus, Aug 27 2018
    
Previous Showing 11-20 of 21 results. Next