Original entry on oeis.org
0, 1, 2, 4, 5, 6, 11, 17, 20, 28, 70, 99, 150, 726, 7431, 22394, 85461, 191207
Offset: 1
A194606(53) = 11 since A194606(115) = 17 is the next record value.
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[p = Prime[n]; k = 0; While[! PrimeQ[p*2^k - 1] && ! PrimeQ[p*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^4}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 11, 18, 20, 28, 70, 106, 150, 726, 2906, 7431, 14073, 22394, 41422, 82587, 85461, 356981
Offset: 1
A194636(55) = 6 since A194636(121) = 11 is the next record value.
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^5}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
a(22) was found in 2002 by Wilfrid Keller.
A364413
Odd numbers m such that for every k >= 1, m*2^k + 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.
Original entry on oeis.org
189035277393779, 212050850472529, 618127765127603, 777947701660121, 1171304921532749, 1358735367828947, 1834310020939021, 2357654372323739, 2638037471052913, 3025664372930897, 3935005074246167, 4688754513654559, 4996748200142999, 5425272498782051, 5455203077891285
Offset: 1
A364412
Odd numbers m such that for every k >= 1, m*2^k - 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.
Original entry on oeis.org
144323411864333, 175321252530209, 190779128601685, 316031956469111, 389882208980861, 450590081221877, 2420018284798363, 2715458757443051, 3161282469971861, 3366332338600025, 3643757921262355, 4380746955320089, 4409682697067321, 5089175909950511, 5281690092088615
Offset: 1
A256237
Primes p such that for all 2^k < p the numbers p + 2^k, p - 2^k, p*2^k + 1, and p*2^k - 1 are composite.
Original entry on oeis.org
8923, 24943, 35437, 42533, 52783, 83437, 105953, 116437, 126631, 133241, 145589, 164729, 172331, 192173, 204013, 215279, 254329, 304709, 308899, 398833, 430499, 436687, 454351, 476869, 479909, 483443, 497597, 522479, 527729, 529103, 545257, 561439, 562651
Offset: 1
A263560
Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
Original entry on oeis.org
37158601, 7425967459, 9013226179, 13671059747, 14140683563, 17190420571, 17210867747, 18553286303, 18563509891, 19720992901, 20064786439, 22400387281, 23728062893, 29428753891, 36195177107, 41074421693, 44786947187, 45199948253, 48845530249
Offset: 1
A263562
Primes p such that for every k >= 1, p*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
Original entry on oeis.org
1865978047, 1889699677, 2362339121, 3637126963, 11776639499, 19321614419, 20000692169, 20111311169, 20592473107, 20597584901, 21477425107, 23368396573, 23479945327, 25326720611, 26161244323, 27190405961, 27380064223, 27474950743, 31467088979
Offset: 1
A263645
Primes that are neither of the form p + 2^k nor of the form p - 2^k with k > 0, and p prime.
Original entry on oeis.org
2, 52504261, 55414847, 79933129, 152485283, 166441831, 177702619, 197903207, 199013093, 220403959, 226794259, 230701763, 245215801, 266642731, 304921637, 321979283, 335035097, 355404353, 359018299, 369810769, 388048561, 412590797, 445661719, 506400173, 540426473
Offset: 1
Comments