cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A194607 Record values in A194606.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 11, 17, 20, 28, 70, 99, 150, 726, 7431, 22394, 85461, 191207
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 30 2011

Keywords

Comments

The index sequence of this one is 1, 3, 6, 15, 17, 29, 53, 115, 186, 220, 229, 1886, 5344, 5736, 66774, 1087403, 14747671, 158018119.
a(17) was found in 2000 by Wilfrid Keller and a(18) was found in 2003 by Patrick De Geest.

Examples

			A194606(53) = 11 since A194606(115) = 17 is the next record value.
		

References

  • Wilfrid Keller, personal communication, 2010.

Crossrefs

Programs

  • Mathematica
    l = -1; Flatten[Table[p = Prime[n]; k = 0; While[! PrimeQ[p*2^k - 1] && ! PrimeQ[p*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^4}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)

A194637 Record values in A194636.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 11, 18, 20, 28, 70, 106, 150, 726, 2906, 7431, 14073, 22394, 41422, 82587, 85461, 356981
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2011

Keywords

Comments

The index sequence is 1, 3, 7, 24, 30, 55, 121, 168, 555, 687, 724, 7447, 26134, 28272, 324802, 419221, 4420051, 8467881, 50302257, 59186640, 135352084, 677738616, ... given by formula (A194639(n)+1)/2.

Examples

			A194636(55) = 6 since A194636(121) = 11 is the next record value.
		

References

  • Wilfrid Keller, personal communication, 2010.

Crossrefs

Programs

  • Mathematica
    l = -1; Flatten[Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; If[k > l, l = k, {}], {n, 10^5}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)

Formula

a(n) = A194591(A194639(n)) = A194636((A194639(n)+1)/2).

Extensions

a(22) was found in 2002 by Wilfrid Keller.

A364413 Odd numbers m such that for every k >= 1, m*2^k + 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

189035277393779, 212050850472529, 618127765127603, 777947701660121, 1171304921532749, 1358735367828947, 1834310020939021, 2357654372323739, 2638037471052913, 3025664372930897, 3935005074246167, 4688754513654559, 4996748200142999, 5425272498782051, 5455203077891285
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A364412 Odd numbers m such that for every k >= 1, m*2^k - 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

144323411864333, 175321252530209, 190779128601685, 316031956469111, 389882208980861, 450590081221877, 2420018284798363, 2715458757443051, 3161282469971861, 3366332338600025, 3643757921262355, 4380746955320089, 4409682697067321, 5089175909950511, 5281690092088615
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A256237 Primes p such that for all 2^k < p the numbers p + 2^k, p - 2^k, p*2^k + 1, and p*2^k - 1 are composite.

Original entry on oeis.org

8923, 24943, 35437, 42533, 52783, 83437, 105953, 116437, 126631, 133241, 145589, 164729, 172331, 192173, 204013, 215279, 254329, 304709, 308899, 398833, 430499, 436687, 454351, 476869, 479909, 483443, 497597, 522479, 527729, 529103, 545257, 561439, 562651
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2015

Keywords

Crossrefs

Subsequence of A256163.

Programs

  • Magma
    lst:=[]; for p in [3..562651 by 2] do if IsPrime(p) then t:=0; k:=0; while 2^k lt p do if IsPrime(p-2^k) or IsPrime(p+2^k) or IsPrime(p*2^k-1) or IsPrime(p*2^k+1) then t:=1; break; end if; k+:=1; end while; if IsZero(t) then Append(~lst, p); end if; end if; end for; lst;

A263560 Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

Original entry on oeis.org

37158601, 7425967459, 9013226179, 13671059747, 14140683563, 17190420571, 17210867747, 18553286303, 18563509891, 19720992901, 20064786439, 22400387281, 23728062893, 29428753891, 36195177107, 41074421693, 44786947187, 45199948253, 48845530249
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 21 2015

Keywords

Comments

What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?

Crossrefs

Subsequence of A263347.

A263562 Primes p such that for every k >= 1, p*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

Original entry on oeis.org

1865978047, 1889699677, 2362339121, 3637126963, 11776639499, 19321614419, 20000692169, 20111311169, 20592473107, 20597584901, 21477425107, 23368396573, 23479945327, 25326720611, 26161244323, 27190405961, 27380064223, 27474950743, 31467088979
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 21 2015

Keywords

Comments

What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?

Crossrefs

Subsequence of A263561.

A263645 Primes that are neither of the form p + 2^k nor of the form p - 2^k with k > 0, and p prime.

Original entry on oeis.org

2, 52504261, 55414847, 79933129, 152485283, 166441831, 177702619, 197903207, 199013093, 220403959, 226794259, 230701763, 245215801, 266642731, 304921637, 321979283, 335035097, 355404353, 359018299, 369810769, 388048561, 412590797, 445661719, 506400173, 540426473
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2015

Keywords

Comments

Primes p such that for all k > 0 the numbers p + 2^k and p - 2^k are nonprimes.
Except for 2, this sequence is the intersection of A065381 and A137715.

Crossrefs

Previous Showing 11-18 of 18 results.