cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A303357 Unitary near-perfect numbers: unitary abundant numbers n such that usigma(n) - 2n is a unitary divisor of n, where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

295680, 13278720, 363095040, 454755840, 675333120, 694256640, 845053440, 1038428160, 2274455040, 2357921280, 3099048960, 5021076480, 6114339840, 9643096320, 9817328640, 14495416320, 17121377280, 23787294720, 30583418880, 36277463040, 45129477120, 114499338240, 211380879360
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2018

Keywords

Comments

The unitary version of A181595.
All the terms up to a(23) are divisible by 2^8 * 3 * 5. - Giovanni Resta, Apr 26 2018

Examples

			295680 is in the sequence since usigma(295680) - 2*295680 = 592128 - 591360 = 768 and 768 is a unitary divisor of 295680.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; aQ[n_] :=
    Module[{d}, d = usigma[n] - 2 n; If[d <= 0, False, Divisible[n, d] && GCD[d, n/d] == 1]]; n = 1; seq={}; Do[ If[aQ[n], AppendTo[seq,n]]; n++, {k, 1, 300000}]; seq

Extensions

a(9)-a(23) from Giovanni Resta, Apr 26 2018

A362969 Nonunitary near-perfect numbers: k such that nusigma(k) = k + d where d is a nonunitary divisor of k.

Original entry on oeis.org

48, 80, 96, 160, 224, 352, 416, 480, 896, 1472, 1476, 1856, 2688, 3968, 6016, 7552, 7808, 8550, 8700, 10332, 17010, 20300, 22496, 36448, 44384, 54944, 63488, 65024, 71264, 73710, 97300, 97792, 114176, 122368, 128512, 310976, 392192, 490496, 515072, 521216, 549990
Offset: 1

Views

Author

Jenaro Tomaszewski, May 10 2023

Keywords

Comments

The nonunitary version of near-perfect numbers (A181595).

Examples

			For k = 352, nusigma(352) = 360. 360 - 352 = 8, which is a nonunitary divisor of 352.
		

Crossrefs

Cf. A048146 (nusigma), A181595.

Programs

  • Mathematica
    q[n_] := Module[{d = Select[Divisors[n], ! CoprimeQ[#, n/#] &], s}, s = Total[d]; AnyTrue[d, n + # == s &]]; Select[Range[10^4], q] (* Amiram Eldar, May 11 2023 *)
  • PARI
    nusigma(n) = {my(f = factor(n)); sigma(f) - prod(i = 1, #f~, f[i, 1]^f[i, 2] + 1);}
    is(n) = {my(d = nusigma(n) - n); d > 0 && !(n%d) && gcd(d, n/d) > 1; } \\ Amiram Eldar, May 20 2023

A383148 k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m.

Original entry on oeis.org

12, 18, 20, 24, 30, 40, 42, 54, 56, 60, 66, 78, 84, 88, 90, 102, 104, 114, 120, 132, 138, 140, 168, 174, 186, 196, 204, 222, 224, 234, 246, 252, 258, 264, 270, 280, 282, 308, 312, 318, 348, 354, 360, 364, 366, 368, 380, 402, 414, 420, 426, 438, 440, 456, 464, 468, 474, 476
Offset: 1

Views

Author

Joshua Zelinsky, Apr 17 2025

Keywords

Comments

Subsequence of A005101 but seem to be much rarer.

Examples

			The sum of the divisors of 60 is 168, and 168 = 2*60 + 48, and 48 = 4*12 and 4 and 12 are divisors of 60, so 60 is in the sequence.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    q[m_] := Module[{d = Divisors[m], ab}, ab = Total[d] - 2*m; ab > 0 && AnyTrue[Subsets[d], Times @@ # == ab &]]; Select[Range[500], q] (* Amiram Eldar, Apr 18 2025 *)
  • PARI
    prodDistinctDiv(n, k, f=factor(n))=my(D=divisors([n,f])); helper(D[2..#D], k)
    helper(v,k)=if(k==1, return(1)); v=select(d->k%d==0, v); if(#v<3, if(#v==2, return(v[2]==k || vecprod(v)==k)); return(#v && v[1]==k)); my(u=v[1..#v-1]); helper(u,k) || helper(u,k/v[#v])
    is(n,f=factor(n))=my(t=sigma([n,f])-2*n); t>1 && prodDistinctDiv(n, t, f) \\ Charles R Greathouse IV, Apr 24 2025
  • Sage
    def facile_candidates(n):
        from itertools import combinations
        divs = divisors(n)
        sigma_n = sigma(n, 1)
        candidates = set()
        # Generate all products of distinct combinations of divisors
        for r in range(2, len(divs)+1):  # start from 2-element products to avoid m=n
            for combo in combinations(divs, r):
                product = prod(combo)
                if product < sigma_n:
                    candidates.add(product)
        return sorted(candidates)
    def find_facile_perfects(x):
        result = []
        for n in range(1, x+1):
            sig = sigma(n, 1)
            if sig < 2*n:
                continue
            candidates = facile_candidates(n)
            for m in candidates:
                if sig == 2*n + m:
                    print(n,m)
                    result.append(n)
                    break
        return result
    

A181707 Numbers of the form m=2^(t-1)*(2^t-33), where 2^t-33 is prime.

Original entry on oeis.org

992, 28544, 122624, 507392, 34355412992, 8796023816192, 140737211531264, 144115179217485824, 9671406556844465630216192, 162259276829213066154002603835392, 11417981541647679048463794346093005918389141504
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

Generated by t= 6, 8, 9, 10, 18, 22, 24, 29, 42, 54, 77, 90, 102, 137,...
A subsequence of A181595 because the abundance of m is 32, and 32 divides 2^(t-1) and therefore divides m.

Crossrefs

Extensions

Definition simplified and more terms added by R. J. Mathar, Nov 18 2010

A181711 Numbers of the form m*(2^k-1), where m = 2^(k-1)*(2^k-1) is a perfect number (A000396).

Original entry on oeis.org

18, 196, 15376, 1032256, 274810802176, 1125882727038976, 72057319160283136, 4951760152529835082242850816, 6129982163463555428116476125461573244012649752219877376
Offset: 1

Views

Author

Vladimir Shevelev, Nov 07 2010

Keywords

Comments

The associated exponents k are in A000043: 2, 3, 5, 7, 13, 17, 19 ,31, 61, ...
One can prove that, if m = 2^(k-1)*(2^k-1) is a perfect number, then m*2^k and m*(2^k-1) are both in A181595. Thus every even term in A000396 is a difference of two terms in A181595.

Examples

			With k=3, m = 2^(k-1)*(2^k - 1) = 2^2*(8 - 1) = 28 is a perfect number (A000396), so m*(2^k - 1) = 28*7 = 196 is in the sequence. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Formula

If odd perfect numbers do not exist, then a(n) = A181710(n) - A000396(n).
a(n) = A019279(n)*(A000668(n))^2 if there are no odd superperfect numbers. - César Aguilera, Jun 13 2017

Extensions

Definition condensed by R. J. Mathar, Dec 05 2010

A289056 Near 3-perfect numbers of the form 2^a*p^t*q, where a >= 1, t = 1 or 2, p < q are both primes.

Original entry on oeis.org

180, 240, 360, 1344, 1872, 2688, 3744, 5376, 6048, 6496
Offset: 1

Views

Author

Vladimir Shevelev, Jun 23 2017

Keywords

Comments

A positive number m is called a near perfect number if the sum of its divisors (A000203) is 3*m+d, where d is a proper divisor of m. Recently [Das and Saikia] proved that there exist only 10 such numbers with the restriction in the name.

Examples

			For m=240, d=24, A000203(m) = 744 = 3*240 + d. So 240 is a member.
		

Crossrefs

Previous Showing 21-26 of 26 results.