cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 99 results. Next

A221531 Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Examples

			For n = 6:
-------------------------
k   A000041        T(6,k)
1      1  *  4   =    4
2      1  *  2   =    2
3      2  *  3   =    6
4      3  *  2   =    6
5      5  *  2   =   10
6      7  *  1   =    7
.         A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2,  1;
2,  2,  2;
3,  2,  4,  3;
2,  3,  4,  6, 5;
4,  2,  6,  6, 10, 7;
2,  4,  4,  9, 10, 14, 11;
4,  2,  8,  6, 15, 14, 22, 15;
3,  4,  4, 12, 10, 21, 22, 30, 22;
4,  3,  8,  6, 20, 14, 33, 30, 44, 30;
2,  4,  6, 12, 10, 28, 22, 45, 44, 60, 42;
6,  2,  8,  9, 20, 14, 44, 30, 66, 60, 84, 56;
...
		

Crossrefs

Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128.

Formula

T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1.

A207032 Triangle read by rows: T(n,k) = number of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 3, 3, 0, 1, 7, 1, 2, 0, 1, 9, 6, 2, 2, 0, 1, 15, 4, 4, 1, 2, 0, 1, 19, 13, 4, 5, 1, 2, 0, 1, 32, 10, 10, 3, 4, 1, 2, 0, 1, 40, 24, 10, 9, 4, 4, 1, 2, 0, 1, 60, 23, 18, 8, 8, 3, 4, 1, 2, 0, 1, 78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

For the calculation of row n, the number of odd/even parts, etc, take the row n from the triangle A207031 and then follow the same rules of A206563.

Examples

			Triangle begins:
  1;
  1,   1;
  3,   0,  1;
  3,   3,  0,  1;
  7,   1,  2,  0, 1;
  9,   6,  2,  2, 0, 1;
  15,  4,  4,  1, 2, 0, 1;
  19, 13,  4,  5, 1, 2, 0, 1;
  32, 10, 10,  3, 4, 1, 2, 0, 1;
  40, 24, 10,  9, 4, 4, 1, 2, 0, 1;
  60, 23, 18,  8, 8, 3, 4, 1, 2, 0, 1;
  78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1;
		

Crossrefs

Formula

It appears that T(n,k) = abs(Sum_{j=k..n} (-1)^j*A207031(n,j)).
It appears that A182703(n,k) = T(n,k) - T(n,k+2). - Omar E. Pol, Feb 26 2012

A211009 Triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of j in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j), 1<=k<=A141285(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 2, 7, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 15, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 7, 22
Offset: 1

Views

Author

Omar E. Pol, Oct 21 2012

Keywords

Comments

Also the finite sequence a(1)..a(r), where a(r) is a record in the sequence, is also a finite triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of the integer whose number of partitions is equal to a(r).
T(n,k) is also 1 plus the number of holes between T(n,k) and the previous member in the column k of triangle.
T(n,k) is also the height of the column mentioned in the definition, in a three-dimensional model of the set of partitions of j, in which the regions appear rotated 90 degrees and where the pivots are the largest part of every region (see A141285). For the definition of "region" see A206437. - Omar E. Pol, Feb 06 2014

Examples

			The irregular triangle begins:
1;
1, 2;
1, 1, 3;
1, 1;
1, 1, 2, 5;
1, 1, 1;
1, 1, 1, 2, 7;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 11;
1, 1, 1;
1, 1, 1, 2, 2;
1, 1, 1, 1;
1, 1, 1, 1, 2, 4, 15;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 4;
1, 1, 1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 2, 3, 7, 22;
...
From _Omar E. Pol_, Feb 06 2014: (Start)
Illustration of initial terms:
.    _
.   |_|
.    1
.      _
.    _|_|
.   |_ _|
.    1 2
.        _
.       |_|
.    _ _|_|
.   |_ _ _|
.    1 1 3
.    _ _
.   |_ _|
.    1 1
.          _
.         |_|
.         |_|
.        _|_|
.    _ _|_ _|
.   |_ _ _ _|
.    1 1 2 5
.
(End)
		

Crossrefs

Records give positive terms of A000041. Row n has length A141285(n). Row sums give A186412.

Extensions

Better definition from Omar E. Pol, Feb 06 2014

A207380 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

In this model each part of a partition can be represented by a cuboid of size 1 x 1 x L, where L is the size of the part. One of the views is a rectangle formed by ones whose area is n*A000041(n) = A066186(n). Each element of the first view is equal to the volume of a horizontal column parallel to the axis x. The second view is the n-th slice illustrated in A026792 which has A000041(n) levels and its area is A006128(n) equals the total number of parts of all partitions of n and equals the sum of largest parts of all partitions of n. Each zone contains a partition of n. Each element of the second view is equal to the volume of a horizontal column parallel to the axis y. The third view is a triangle because it is also the n-th slice of the tetrahedron of A209655. The area of triangle is A000217(n). Each element of the third view is equal to the volume of a vertical column parallel to the axis z. The sum of elements of each view is A066186(n) equals the area of the first view. For more information about the shell model of partitions see A135010 and A182703.

Examples

			For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this:
.
.   A066186(5) = 35     A006128(5) = 20
.
.         1 1 1 1 1     5
.         1 1 1 1 1     3 2
.         1 1 1 1 1     4 1
.         1 1 1 1 1     2 2 1
.         1 1 1 1 1     3 1 1
.         1 1 1 1 1     2 1 1 1
.         1 1 1 1 1     1 1 1 1 1
.
.
.         7 6 4 2 1
.           1 2 3 2
.             1 1 2
.               1 1
.                 1
.
.   A000217(5) = 15
.
The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2:
    seq (a(n), n=0..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = n * A000041(n) + A000217(n) + A006128(n) = A066186(n) + A000217(n) + A006128(n).

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A210970 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 9, 18, 34, 55, 91, 136, 208, 301, 439, 616, 876, 1203, 1665, 2256, 3062, 4083, 5459, 7186, 9470, 12335, 16051, 20688, 26648, 34027, 43395, 54966, 69496, 87341, 109591, 136766, 170382, 211293, 261519, 322382, 396694, 486327, 595143, 725954, 883912
Offset: 0

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Comments

For more information see A135010 and A182703.

Examples

			For n = 6 the illustration of the three views of a three-dimensional version of the shell model of partitions with 6 shells looks like this:
.
.   A006128(6) = 35     A006128(6) = 35
.
.                 6     6
.               3 3     3 3
.               4 2     4 2
.             2 2 2     2 2 2
.               5 1     5 1
.             3 2 1     3 2 1
.             4 1 1     4 1 1
.           2 2 1 1     2 2 1 1
.           3 1 1 1     3 1 1 1
.         2 1 1 1 1     2 1 1 1 1
.       1 1 1 1 1 1     1 1 1 1 1 1
.
.
.       1 2 5 9 12 6  \
.         1 1 3 5 6    \
.           1 1 2 4     \ 6th slice of
.             1 1 2     / tetrahedron A210961
.               1 1    /
.                 1   /
.
.      A000217(6) = 21
.
The areas of the shadows of the three views are A006128(6) = 35, A006128(6) = 35 and A000217(6) = 21, therefore the total area of the three shadows is 35+35+21 = 91, so a(6) = 91.
		

Crossrefs

Formula

a(n) = 2*A006128(n) + A000217(n).

A194702 Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (2 + m).

Original entry on oeis.org

2, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 05 2012

Keywords

Comments

Sub-triangle of A182703 and also of A194812. Note that the sum of every row is also the number of partitions of 2. For further information see A182703 and A135010.

Examples

			Triangle begins:
2,
0, 2,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
...
For k = 1 and  m = 1; T(1,1) = 2 because there are two parts of size 1 in the last section of the set of partitions of 3, since 2 + m = 3, so a(1) = 2. For k = 2 and m = 1; T(2,1) = 0 because there are no parts of size 2 in the last section of the set of partitions of 3, since 2 + m = 3, so a(2) = 0.
		

Crossrefs

Always the sum of row k = p(2) = A000041(n) = 2.
The first (0-10) members of this family of triangles are A023531, A129186, this sequence, A194703-A194710.

Formula

T(k,m) = A182703(2+m,k), with T(k,m) = 0 if k > 2+m.
T(k,m) = A194812(2+m,k).

A194710 Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (10 + m).

Original entry on oeis.org

42, 15, 27, 10, 14, 18, 5, 10, 10, 17, 4, 5, 8, 10, 15, 2, 5, 4, 8, 9, 14, 2, 2, 4, 5, 7, 9, 13, 1, 2, 2, 4, 4, 8, 8, 13, 1, 1, 2, 2, 4, 4, 7, 9, 12, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12
Offset: 1

Views

Author

Omar E. Pol, Feb 05 2012

Keywords

Comments

Sub-triangle of A182703 and also of A194812. Note that the sum of row k is also the number of partitions of 10. For further information see A182703 and A135010.

Examples

			Triangle begins:
  42;
  15, 27;
  10, 14, 18;
   5, 10, 10, 17;
   4,  5,  8, 10, 15;
   2,  5,  4,  8,  9, 14;
   2,  2,  4,  5,  7,  9, 13;
   1,  2,  2,  4,  4,  8,  8, 13;
   1,  1,  2,  2,  4,  4,  7,  9, 12;
   0,  1,  1,  2,  2,  4,  4,  7,  8, 13;
   1,  0,  1,  1,  2,  2,  4,  4,  7,  8, 12;
   0,  1,  0,  1,  1,  2,  2,  4,  4,  7,  8, 12;
   0,  0,  1,  0,  1,  1,  2,  2,  4,  4,  7,  8, 12;
   0,  0,  0,  1,  0,  1,  1,  2,  2,  4,  4,  7,  8, 12;
  ...
For k = 1 and m = 1; T(1,1) = 42 because there are 42 parts of size 1 in the last section of the set of partitions of 11, since 10 + m = 11, so a(1) = 42. For k = 2 and m = 1; T(2,1) = 15 because there are 15 parts of size 2 in the last section of the set of partitions of 11, since 10 + m = 11, so a(2) = 15.
		

Crossrefs

Always the sum of row k = p(10) = A000041(10) = 42.
The first (0-10) members of this family of triangles are A023531, A129186, A194702-A194709, this sequence.

Formula

T(k,m) = A182703(10+m,k), with T(k,m) = 0 if k > 10+m.
T(k,m) = A194812(10+m,k).
Beginning with row k=11 each row starts with (k-11) 0's and ends with the subsequence 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, the initial terms of A002865. - Alois P. Heinz, Feb 15 2012

A211999 A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 5, 5, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 14 2012

Keywords

Comments

The sequence lists the partitions of all positive integers. Each row of the irregular array is a partition of j.
At stage 1, we start with 1.
At stage j > 1, we write the partitions of j using the following rules:
First we copy the last A000041(j-1) rows of the array in descending order, as a mirror image, starting with the row that contains the part of size j-1. At the end of each new row, we added a part of size 1.
Second, we write the partitions of j that do not contain 1 as a part, in reverse-lexicographic order, such that the last row (or partition of j) is j.
Note that the table can be partially folded. In this case we have a three-dimensional structure in which each column contains parts of the same size (see example). Also the table can be completely folded, therefore stacked parts have the same size.

Examples

			A table of partitions.
---------------------------------------------------------
.              Expanded       Geometric  Side view of the
Partitions     version        model      folded table
---------------------------------------------------------
1;             1;             |*|                /
---------------------------------------------------------
1,1;           1,1;           |o|*|              \
2;             . 2;           |* *|               \
---------------------------------------------------------
2,1;           . 2,1;         |o o|*|             /
1,1,1;         1,1,1;         |o|o|*|            /
3;             . . 3;         |* * *|           /
---------------------------------------------------------
3,1;           . . 3,1;       |o o o|*|         \
1,1,1,1;       1,1,1,1;       |o|o|o|*|          \
2,1,1;         . 2,1,1;       |o o|o|*|           \
2,2;           . 2,. 2;       |* *|* *|            \
4;             . . . 4;       |* * * *|             \
---------------------------------------------------------
4,1;           . . . 4,1;     |o o o o|*|           /
2,2,1;         . 2,. 2,1;     |o o|o o|*|          /
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|         /
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|        /
3,1,1;         . . 3,1,1;     |o o o|o|*|       /
3,2;           . . 3,. 2;     |* * *|* *|      /
5;             . . . . 5;     |* * * * *|     /
---------------------------------------------------------
5,1;           . . . . 5,1;   |o o o o o|*|   \
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|    \
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|     \
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|      \
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|       \
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|        \
4,1,1;         . . . 4,1,1;   |o o o o|o|*|         \
2,2,2;         . 2, .2,. 2;   |* *|* *|* *|          \
4,2;           . . . 4,. 2;   |* * * *|* *|           \
3,3;           . . 3,. . 3;   |* * *|* * *|            \
6;             . . . . . 6;   |* * * * * *|             \
---------------------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A211983, A211984, A211989. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.

A207378 Triangle read by rows in which row n lists the parts of the last section of the set of partitions of n in nonincreasing order.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 6, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2012

Keywords

Comments

Starting from the first row; it appears that the total numbers of occurrences of k in k successive rows give the sequence A000041. For more information see A182703.

Examples

			Written as a triangle:
1;
2,1;
3,1,1;
4,2,2,1,1,1;
5,3,2,1,1,1,1,1;
6,4,3,3,2,2,2,2,1,1,1,1,1,1,1;
7,5,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1;
8,6,5,4,4,4,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
		

Crossrefs

Triangle similar to A138121. Mirror of A207377. Row n has length A138137(n). Row sums give A138879. Column 1 is A000027.

A211983 A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 5, 6, 3, 3, 4, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 5, 1, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A211999. The order of the partitions of the even integers is the same as A211989.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
2;             . 2;           |* *|
1,1;           1,1;           |o|*|
--------------------------------------------
2,1;           . 2,1;         |o o|*|
1,1,1;         1,1,1;         |o|o|*|
3;             . . 3;         |* * *|
--------------------------------------------
4;             . . . 4;       |* * * *|
2,2;           . 2,. 2;       |* *|* *|
2,1,1;         . 2,1,1;       |o o|o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
3,1;           . . 3,1;       |o o o|*|
--------------------------------------------
4,1;           . . . 4,1;     |o o o o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
3,1,1;         . . 3,1,1;     |o o o|o|*|
3,2;           . . 3,. 2;     |* * *|* *|
5;             . . . . 5;     |* * * * *|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
5,1;           . . . . 5,1;   |o o o o o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A211984, A211989, A211999. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.
Previous Showing 21-30 of 99 results. Next