A336811
Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1.
Original entry on oeis.org
1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ----------> 6 4 3 2 2 1 1
3 2 1 1 1
2 1
1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _ | 6 6 6 6
|_ _ _|_ | 3 3 3 3 3 3 3 3
|_ _ | | 4 2 4 2 4 2 4 2
|_ _|_ _|_ | 2 2 2 2 2 2 2 2 2 2 2 2
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
|_| 1 1 1 1
.
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by _Omar E. Pol_, Aug 10 2021
Cf.
A000007,
A000041,
A027750,
A028310,
A002865,
A133735,
A135010,
A138121,
A138137,
A182703,
A187219,
A207378,
A221529,
A336812,
A339278,
A340035,
A340061,
A346741.
-
A336811[row_]:=Flatten[Table[ConstantArray[row-m,PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
Array[A336811,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--;); 1+s;}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
A206435
Total sum of odd parts in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 5, 3, 13, 13, 29, 29, 66, 70, 126, 146, 241, 287, 450, 526, 791, 963, 1360, 1660, 2312, 2810, 3799, 4649, 6158, 7528, 9824, 11962, 15393, 18773, 23804, 28932, 36413, 44093, 54953, 66419, 82085, 98929, 121469, 145865, 177983, 213241, 258585, 308861
Offset: 1
Cf.
A000593,
A002865,
A135010,
A138121,
A138879,
A206433,
A206434,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +(i mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i > n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A206436
Total sum of even parts in the last section of the set of partitions of n.
Original entry on oeis.org
0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
Offset: 1
Cf.
A002865,
A135010,
A138121,
A138879,
A146076,
A206433,
A206434,
A206435,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A206433
Total number of odd parts in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 3, 3, 7, 9, 15, 19, 32, 40, 60, 78, 111, 143, 200, 252, 343, 437, 576, 728, 952, 1190, 1531, 1911, 2426, 3008, 3788, 4664, 5819, 7143, 8830, 10780, 13255, 16095, 19661, 23787, 28881, 34795, 42051, 50445, 60675, 72547, 86859, 103481, 123442, 146548
Offset: 1
Cf.
A001227,
A002865,
A006128,
A135010,
A138121,
A138137,
A182703,
A206434,
A206435,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]]+g[[1]], f[[2]]+g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A206434
Total number of even parts in the last section of the set of partitions of n.
Original entry on oeis.org
0, 1, 0, 3, 1, 6, 4, 13, 10, 24, 23, 46, 46, 81, 88, 143, 159, 242, 278, 404, 470, 657, 776, 1057, 1251, 1663, 1984, 2587, 3089, 3967, 4742, 6012, 7184, 9001, 10753, 13351, 15917, 19594, 23335, 28514, 33883, 41140, 48787, 58894, 69691, 83680, 98809, 118101
Offset: 1
Cf.
A002865,
A006128,
A135010,
A138121,
A138137,
A182703,
A183063,
A206433,
A206435,
A206436,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
seq (a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i+1, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[ a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A207377
Triangle read by rows in which row n lists the parts of the last section of the set of partitions of n in nondecreasing order.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 8
Offset: 1
Written as a triangle:
1;
1,2;
1,1,3;
1,1,1,2,2,4;
1,1,1,1,1,2,3,5;
1,1,1,1,1,1,1,2,2,2,2,3,3,4,6;
1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,5,7;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,5,6,8;
A341049
Irregular triangle read by rows T(n,k) in which row n lists the terms of n-th row of A336811 in nondecreasing order.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 2, 3, 4, 6, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 8, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7, 9, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 10
Offset: 1
Triangle begins:
1;
2;
1, 3;
1, 2, 4;
1, 1, 2, 3, 5;
1, 1, 2, 2, 3, 4, 6;
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7;
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 8;
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7, 9;
...
Cf.
A000070,
A000041,
A002865,
A027750,
A028310,
A133735,
A135010,
A138121,
A138137,
A176206,
A182703,
A187219,
A207378,
A237593,
A336812,
A338156,
A339278,
A340061.
-
A341049[rowmax_]:=Table[Flatten[Table[ConstantArray[n-m,PartitionsP[m]-PartitionsP[m-1]],{m,n-1,0,-1}]],{n,rowmax}];
A341049[10] (* Generates 10 rows *) (* Paolo Xausa, Feb 17 2023 *)
-
A341049(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(n-m)-numbpart(n-m-1),i,m))));
A341049(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
Showing 1-7 of 7 results.
Comments