A135010
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[2,3],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 | |_ 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 | |_ _ 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 | |_ _ _ 1, 1,
4 4 | |_ _| 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 | |_ _ _ _ 1, 1,
5 6 | |_ _ _| 2,3, 2,3,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 | |_ _ _ _ _ 1, 1,
6 8 | | |_ _| 2,2,2, 2,2,2,
6 9 | |_ _ _ _| 2,4, 2,4,
6 10 | |_ _ _| 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
(End)
Cf.
A000041,
A026791,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207383,
A207379,
A211009.
-
with(combinat):
T:= proc(m) local b, ll;
b:= proc(n, i, l)
if n=0 then ll:=ll, l[]
else seq(b(n-j, j, [l[], j]), j=i..n)
fi
end;
ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll
end:
seq(T(n), n=1..10); # Alois P. Heinz, Feb 19 2012
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *)
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~
DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)
A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A141285
Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1
Written as a triangle T(j,k) the sequence begins:
1;
2;
3;
2, 4;
3, 5;
2, 4, 3, 6;
3, 5, 4, 7;
2, 4, 3, 6, 5, 4, 8;
3, 5, 4, 7, 3, 6, 5, 9;
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11;
...
------------------------------------------
n A000041 a(n)
------------------------------------------
1 = p(1) 1
2 = p(2) 2 .
3 = p(3) . 3
4 2 .
5 = p(4) 4 .
6 . 3
7 = p(5) . 5
8 2 .
9 4 .
10 3 .
11 = p(6) 6 .
12 . 3
13 . 5
14 . 4
15 = p(7) . 7
...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
--------------------------------------------------------
. Diagram Triangle in which
Partitions of regions rows are partitions
of 6 and partitions and columns are regions
--------------------------------------------------------
. _ _ _ _ _ _
6 _ _ _ | 6
3+3 _ _ _|_ | 3 3
4+2 _ _ | | 4 2
2+2+2 _ _|_ _|_ | 2 2 2
5+1 _ _ _ | | 5 1
3+2+1 _ _ _|_ | | 3 1 1
4+1+1 _ _ | | | 4 1 1
2+2+1+1 _ _|_ | | | 2 2 1 1
3+1+1+1 _ _ | | | | 3 1 1 1
2+1+1+1+1 _ | | | | | 2 1 1 1 1
1+1+1+1+1+1 | | | | | | 1 1 1 1 1 1
...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
--------------------------------------------------------
. Diagram Diagram
. of regions of regions
. and compositions and partitions
---------------------------------------------------------
. j = 1 2 3 4 5 j = 1 2 3 4 5
---------------------------------------------------------
n A001511 A228354 a(n)
---------------------------------------------------------
1 1 _| | | | | ............ 1 1 _| | | | |
2 2 _ _| | | | ............ 2 2 _ _| | | |
3 1 _| | | | ......... 4 3 _ _ _| | |
4 3 _ _ _| | | ../ ....... 6 2 _ _| | |
5 1 _| | | | / ....... 8 4 _ _ _ _| |
6 2 _ _| | | ../ / .... 12 3 _ _ _| |
7 1 _| | | / / . 16 5 _ _ _ _ _|
8 4 _ _ _ _| | ../ / /
9 1 _| | | | / /
10 2 _ _| | | / /
11 1 _| | | / /
12 3 _ _ _| | ../ /
13 1 _| | | /
14 2 _ _| | /
15 1 _| | /
16 5 _ _ _ _ _| ../
...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
. 5
. /\ 3
. 4 / \ 4 /\
. /\ / \ /\ /
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 /
. 1 /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
.(End)
Cf.
A000041,
A135010,
A182730,
A182731,
A182732,
A182733,
A182982,
A182983,
A182703,
A193870,
A194446,
A194447,
A194550,
A206437,
A210979,
A210980,
A211978,
A220517,
A225600,
A225610.
-
Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)
Better definition and edited by
Omar E. Pol, Oct 17 2013
A182105
Number of elements merged by bottom-up merge sort.
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 32, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8
Offset: 1
Using construction (b), the initial values n, u_n, v_n are:
1, 1, 1
2, 2, 1
3, 2, 2
4, 3, 1
5, 4, 1
6, 4, 2
7, 4, 4
8, 5, 1
9, 6, 1
10, 6, 2
11, 7, 1
12, 8, 1
13, 8, 2
14, 8, 4
15, 8, 8
16, 9, 1
17, 10, 1
18, 10, 2
19, 11, 1
20, 12, 1
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (first 2^5-1 terms):
Written as an irregular triangle: T(j,k) is also the length of the k-th column in the j-th region of the diagram, as shown below. Note that the j-th row of the diagram is equivalent to the j-th composition (in colexicographic order) of 5 (cf. A228525):
------------------------------------
. Diagram Triangle
------------------------------------
. j / k: 1 2 3 4 5 / 1 2 3 4 5
------------------------------------
. _ _ _ _ _
. 1 |_| | | | | 1;
. 2 |_ _| | | | 1,2;
. 3 |_| | | | 1;
. 4 |_ _ _| | | 1,2,4;
. 5 |_| | | | 1;
. 6 |_ _| | | 1,2;
. 7 |_| | | 1;
. 8 |_ _ _ _| | 1,2,4,8;
. 9 |_| | | | 1;
. 10 |_ _| | | 1,2;
. 11 |_| | | 1;
. 12 |_ _ _| | 1,2,4;
. 13 |_| | | 1;
. 14 |_ _| | 1,2;
. 15 |_| | 1;
. 16 |_ _ _ _ _| 1,2,4,8,16;
...
(End)
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, Pre-Fascicle 6A, Section 7.2.2.2, Eq. (97).
- Donald E. Knuth, The Art of Computer Programming, Addison-Wesley (2015) Vol. 4, Fascicle 6, Satisfiability, p. 80, Eq. (130).
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- Filip Bártek, Karel Chvalovský, and Martin Suda, Regularization in Spider-Style Strategy Discovery and Schedule Construction, arXiv:2403.12869 [cs.AI], 2024. See p. 5.
- Michael Luby Alistair, Alistair Sinclair, and David Zuckerman, Optimal speedup of Las Vegas algorithms, Info. Processing Lett., 47 (1993), 173-180.
- Laurent Orseau, Levi H. S. Lelis, Tor Lattimore, Théophane Weber, Single-Agent Policy Tree Search With Guarantees, arXiv:1811.10928 [cs.AI], 2018, also in Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
-
A182105_list := proc(n) local L,m,k;
L := NULL;
for m from 1 to n do
for k from 0 to padic[ordp](m, 2) do
L := L,2^k od od;
L; end:
A182105_list(250);
# Peter Luschny, Aug 01 2012, based on Charles R Greathouse IV's PARI program.
-
Array[Prepend[2^Range@ IntegerExponent[#, 2], 1] &, 48] // Flatten (* Michael De Vlieger, Jan 22 2019 *)
-
for(n=1,50,for(k=0,valuation(n,2),print1(2^k", "))) \\ Charles R Greathouse IV, Apr 12 2012
A211026
Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1
Cf.
A000041,
A052810,
A135010,
A139582,
A141285,
A186412,
A186114,
A187219,
A193870,
A194446,
A194447,
A206437,
A211009
A228109
Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.
Original entry on oeis.org
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0
Illustration of initial terms (n = 1..53):
5
4 /
3 /\/\ /
2 / \ /\/
1 /\/\ /\/ \ /\/
0 /\ /\/ \ / \ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
. /\
5..................... / \ /\
. /\ / \ /\ / /
3........... / \ / /\/\ \ / \/ /
2...... /\ / \ /\/ / \ \ / /\/
1... /\ / \ /\/ /\/\ \ / /\/ \ \ /\/ /\/
0 /\/ \/ /\ \/ /\/ \ \/ / \ \/ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
.
Region:
. 1 2 3 4 5 6 7 8 9 10
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228110,
A229946.
A228110
Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.
Original entry on oeis.org
0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0
Illustration of initial terms (n = 1..59):
.
11 ...........................................................
. /
. /
. /
7 .................................. /
. /\ /
5 .................... / \ /\/
. /\ / \ /\ /
3 .......... / \ / \ / \/
2 ..... /\ / \ /\/ \ /
1 .. /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
Column 1 is
A000004. Both column 2 and the right border are in
A000012. Both columns 3 and 5 are in
A007395.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A229946.
A229946
Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps.
Original entry on oeis.org
0, 1, 0, 2, 0, 3, 0, 2, 1, 5, 0, 3, 2, 7, 0, 2, 1, 5, 3, 6, 5, 11, 0, 3, 2, 7, 5, 9, 8, 15, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 0, 3, 2, 7, 5, 9, 8, 15, 11, 14, 13, 19, 17, 22, 21, 30, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 15, 19, 18, 25, 23, 29, 28, 33, 32, 42, 0
Offset: 0
Illustration of initial terms (n = 0..21):
. 11
. /
. /
. /
. 7 /
. /\ 6 /
. 5 / \ 5 /\/
. /\ / \ /\ / 5
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 / 3
. 1 /\ / \ /\/ \ / 2 \ /\/
. /\/ \/ \/ 1 \/ \/ 1
. 0 0 0 0 0 0
.
Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0.
.
Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins:
0,1;
0,2;
0,3;
0,2,1,5;
0,3,2,7;
0,2,1,5,3,6,5,11;
0,3,2,7,5,9,8,15;
0,2,1,5,3,6,5,11,7,12,11,15,14,22;
0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30;
0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42;
...
Column 1 is
A000004. Right border gives
A000041 for the positive integers.
Cf.
A006128,
A135010,
A138137,
A139582,
A141285,
A186412,
A187219,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610.
A230440
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1
Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 _| | 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 _ _| | 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 _ _ _| | 1, 1,
4 4 |_ _| | 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 _ _ _ _| | 1, 1,
5 6 |_ _ _| | 3,2, 3,2,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 _ _ _ _ _| | 1, 1,
6 8 |_ _| | | 2,2,2, 2,2,2,
6 9 |_ _ _ _| | 4,2, 4,2,
6 10 |_ _ _| | 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
Cf.
A000041,
A135010,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207034,
A207383,
A207379,
A211009.
A233968
Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1.
Original entry on oeis.org
2, 4, 6, 12, 16, 30, 38, 64, 84, 128, 166, 248, 314, 448, 576, 790, 1004, 1358, 1708, 2264, 2844, 3694, 4614, 5936, 7354, 9342, 11544, 14502, 17816, 22220, 27144, 33584, 40878, 50192, 60828, 74276, 89596, 108778, 130772, 157918, 189116, 227374
Offset: 1
Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. _ _ _ |
. _ _ _|_ |
. _ _ | |
. _ _ _ _ _ | | |
. _ _ _ | |
. _ _ _ _ | | |
. _ _ | | |
. _ _ _ | | | |
. _ _ | | | |
. _ | | | | |
. | | | | | |
.
. 2 4 6 12 16 30
.
Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
7..................................
. /\
5.................... / \ /\
. /\ / \ /\ /
3.......... / \ / \ / \/
2..... /\ / \ /\/ \ /
1.. /\ / \ /\/ \ / \ /\/
0 /\/ \/ \/ \/ \/
. 2, 4, 6, 12, 16,...
.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228109,
A228110,
A229946.
Showing 1-10 of 12 results.
Comments