cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A135010 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 17 2007, Mar 21 2008

Keywords

Comments

This is the original sequence of a large number of sequences connected with the section model of partitions.
Here "the n-th section of the set of partitions of any integer greater than or equal to n" (hence "the last section of the set of partitions of n") is defined to be the set formed by all parts that occur as a result of taking all partitions of n and then removing all parts of the partitions of n-1. For integers greater than 1 the structure of a section has two main areas: the head and tail. The head is formed by the partitions of n that do not contain 1 as a part. The tail is formed by A000041(n-1) partitions of 1. The set of partitions of n contains the sets of partitions of the previous numbers. The section model of partitions has several versions according with the ordering of the partitions or with the representation of the sections. In this sequence we use the ordering of A026791.
The section model of partitions can be interpreted as a table of partitions. See also A138121. - Omar E. Pol, Nov 18 2009
It appears that the versions of the model show an overlapping of sections and subsections of the numbers congruent to k mod m into parts >= m. For example:
First generation (the main table):
Table 1.0: Partitions of integers congruent to 0 mod 1 into parts >= 1.
Second generation:
Table 2.0: Partitions of integers congruent to 0 mod 2 into parts >= 2.
Table 2.1: Partitions of integers congruent to 1 mod 2 into parts >= 2.
Third generation:
Table 3.0: Partitions of integers congruent to 0 mod 3 into parts >= 3.
Table 3.1: Partitions of integers congruent to 1 mod 3 into parts >= 3.
Table 3.2: Partitions of integers congruent to 2 mod 3 into parts >= 3.
And so on.
Conjecture:
Let j and n be integers congruent to k mod m such that 0 <= k < m <= j < n. Let h=(n-j)/m. Consider only all partitions of n into parts >= m. Then remove every partition in which the parts of size m appears a number of times < h. Then remove h parts of size m in every partition. The rest are the partitions of j into parts >= m. (Note that in the section model, h is the number of sections or subsections removed), (Omar E. Pol, Dec 05 2010, Dec 06 2010).
Starting from the first row of triangle, it appears that the total numbers of parts of size k in k successive rows give the sequence A000041 (see A182703). - Omar E. Pol, Feb 22 2012
The last section of n contains A187219(n) regions (see A206437). - Omar E. Pol, Nov 04 2012

Examples

			Triangle begins:
  [1];
  [1],[2];
  [1],[1],[3];
  [1],[1],[1],[2,2],[4];
  [1],[1],[1],[1],[1],[2,3],[5];
  [1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6];
  ...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n  j          Diagram          Parts           Parts
---------------------------------------------------------
.                   _
1  1               |_|                1;              1;
.                 _
2  1             | |_               1,              1,
2  2             |_ _|              2;                2;
.               _
3  1           | |                1,              1,
3  2           | |_ _             1,                1,
3  3           |_ _ _|            3;                  3;
.             _
4  1         | |                1,              1,
4  2         | |                1,                1,
4  3         | |_ _ _           1,                  1,
4  4         |   |_ _|          2,2,                2,2,
4  5         |_ _ _ _|          4;                    4;
.           _
5  1       | |                1,              1,
5  2       | |                1,                1,
5  3       | |                1,                  1,
5  4       | |                1,                  1,
5  5       | |_ _ _ _         1,                    1,
5  6       |   |_ _ _|        2,3,                  2,3,
5  7       |_ _ _ _ _|        5;                      5;
.         _
6  1     | |                1,              1,
6  2     | |                1,                1,
6  3     | |                1,                  1,
6  4     | |                1,                  1,
6  5     | |                1,                    1,
6  6     | |                1,                    1,
6  7     | |_ _ _ _ _       1,                      1,
6  8     |   |   |_ _|      2,2,2,                2,2,2,
6  9     |   |_ _ _ _|      2,4,                    2,4,
6  10    |     |_ _ _|      3,3,                    3,3,
6  11    |_ _ _ _ _ _|      6;                        6;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Row sums give A138879.
Right border gives A000027.

Programs

  • Maple
    with(combinat):
    T:= proc(m) local b, ll;
          b:= proc(n, i, l)
                if n=0 then ll:=ll, l[]
              else seq(b(n-j, j, [l[], j]), j=i..n)
                fi
              end;
          ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll
        end:
    seq(T(n), n=1..10);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *)
    Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~
    DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)

A138121 Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 21 2008

Keywords

Comments

Mirror of triangle A135010.

Examples

			Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions                A194805            Table 1.0
.  of 7       p(n)        A194551             A135010
---------------------------------------------------------
7              15                    7     7 . . . . . .
4+3                                4       4 . . . 3 . .
5+2                              5         5 . . . . 2 .
3+2+2                          3           3 . . 2 . 2 .
6+1            11    6       1             6 . . . . . 1
3+3+1                  3     1             3 . . 3 . . 1
4+2+1                    4   1             4 . . . 2 . 1
2+2+2+1                    2 1             2 . 2 . 2 . 1
5+1+1           7            1   5         5 . . . . 1 1
3+2+1+1                      1 3           3 . . 2 . 1 1
4+1+1+1         5        4   1             4 . . . 1 1 1
2+2+1+1+1                  2 1             2 . 2 . 1 1 1
3+1+1+1+1       3            1 3           3 . . 1 1 1 1
2+1+1+1+1+1     2          2 1             2 . 1 1 1 1 1
1+1+1+1+1+1+1   1            1             1 1 1 1 1 1 1
.               1                         ---------------
.               *<------- A000041 -------> 1 1 2 3 5 7 11
.                         A182712 ------->   1 0 2 1 4 3
.                         A182713 ------->     1 0 1 2 2
.                         A182714 ------->       1 0 1 1
.                                                  1 0 1
.                         A141285           A182703  1 0
.                    A182730   A182731                 1
---------------------------------------------------------
.                              A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
.       A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
.       A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
.                    . . . . 1 . . . .
.                    . . . 2 1 . . . .
.                    . 3 . . 1 2 . . .
.      Table 2.0     . . 2 2 1 . . 3 .     Table 2.1
.                    . . . . 1 2 2 . .
.                            1 . . . .
.
.  A182982  A182742       A194803       A182983  A182743
.  A182992  A182994       A194804       A182993  A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n  j     Diagram          Parts
---------------------------------------
.         _
1  1     |_|              1;
.         _ _
2  1     |_  |            2,
2  2       |_|            .  1;
.         _ _ _
3  1     |_ _  |          3,
3  2         | |          .  1,
3  3         |_|          .  .  1;
.         _ _ _ _
4  1     |_ _    |        4,
4  2     |_ _|_  |        2, 2,
4  3           | |        .  1,
4  4           | |        .  .  1,
4  5           |_|        .  .  .  1;
.         _ _ _ _ _
5  1     |_ _ _    |      5,
5  2     |_ _ _|_  |      3, 2,
5  3             | |      .  1,
5  4             | |      .  .  1,
5  5             | |      .  .  1,
5  6             | |      .  .  .  1,
5  7             |_|      .  .  .  .  1;
.         _ _ _ _ _ _
6  1     |_ _ _      |    6,
6  2     |_ _ _|_    |    3, 3,
6  3     |_ _    |   |    4, 2,
6  4     |_ _|_ _|_  |    2, 2, 2,
6  5               | |    .  1,
6  6               | |    .  .  1,
6  7               | |    .  .  1,
6  8               | |    .  .  .  1,
6  9               | |    .  .  .  1,
6  10              | |    .  .  .  .  1,
6  11              |_|    .  .  .  .  .  1;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Rows sums give A138879.

Programs

  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
    Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}]  // Flatten (* Robert Price, May 11 2020 *)

A141285 Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1

Views

Author

Omar E. Pol, Aug 01 2008

Keywords

Comments

Also largest part of the n-th region of the set of partitions of j, if 1 <= n <= A000041(j). For the definition of "region of the set of partitions of j" see A206437.
Also triangle read by rows: T(j,k) is the largest part of the k-th region in the last section of the set of partitions of j.
For row n >= 2 the rows of triangle are also the branches of a tree which is a projection of a three-dimensional structure of the section model of partitions of A135010, version tree. The branches of even rows give A182730. The branches of odd rows give A182731. Note that each column contains parts of the same size. It appears that the structure of A135010 is a periodic table of integer partitions. See also A210979 and A210980.
Also column 1 of: A193870, A206437, A210941, A210942, A210943. - Omar E. Pol, Sep 01 2013
Also row lengths of A211009. - Omar E. Pol, Feb 06 2014

Examples

			Written as a triangle T(j,k) the sequence begins:
  1;
  2;
  3;
  2, 4;
  3, 5;
  2, 4, 3, 6;
  3, 5, 4, 7;
  2, 4, 3, 6, 5, 4, 8;
  3, 5, 4, 7, 3, 6, 5, 9;
  2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
  3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8,  7, 6, 11;
  ...
  ------------------------------------------
  n  A000041                a(n)
  ------------------------------------------
   1 = p(1)                   1
   2 = p(2)                 2 .
   3 = p(3)                   . 3
   4                        2 .
   5 = p(4)               4   .
   6                          . 3
   7 = p(5)                   .   5
   8                        2 .
   9                      4   .
  10                    3     .
  11 = p(6)           6       .
  12                          . 3
  13                          .   5
  14                          .     4
  15 = p(7)                   .       7
  ...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
  --------------------------------------------------------
  .                  Diagram         Triangle in which
  Partitions       of regions       rows are partitions
  of 6           and partitions   and columns are regions
  --------------------------------------------------------
  .                _ _ _ _ _ _
  6                _ _ _      |                         6
  3+3              _ _ _|_    |                       3 3
  4+2              _ _    |   |                     4   2
  2+2+2            _ _|_ _|_  |                   2 2   2
  5+1              _ _ _    | |                 5       1
  3+2+1            _ _ _|_  | |               3 1       1
  4+1+1            _ _    | | |             4   1       1
  2+2+1+1          _ _|_  | | |           2 2   1       1
  3+1+1+1          _ _  | | | |         3   1   1       1
  2+1+1+1+1        _  | | | | |       2 1   1   1       1
  1+1+1+1+1+1       | | | | | |     1 1 1   1   1       1
  ...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
  --------------------------------------------------------
  .          Diagram                           Diagram
  .         of regions                        of regions
  .      and compositions                   and partitions
  ---------------------------------------------------------
  .      j = 1 2 3 4 5                     j = 1 2 3 4 5
  ---------------------------------------------------------
   n  A001511                    A228354  a(n)
  ---------------------------------------------------------
   1   1     _| | | | | ............ 1    1    _| | | | |
   2   2     _ _| | | | ............ 2    2    _ _| | | |
   3   1     _|   | | |    ......... 4    3    _ _ _| | |
   4   3     _ _ _| | | ../  ....... 6    2    _ _|   | |
   5   1     _| |   | |    / ....... 8    4    _ _ _ _| |
   6   2     _ _|   | | ../ /   .... 12   3    _ _ _|   |
   7   1     _|     | |    /   /   . 16   5    _ _ _ _ _|
   8   4     _ _ _ _| | ../   /   /
   9   1     _| | |   |      /   /
  10   2     _ _| |   |     /   /
  11   1     _|   |   |    /   /
  12   3     _ _ _|   | ../   /
  13   1     _| |     |      /
  14   2     _ _|     |     /
  15   1     _|       |    /
  16   5     _ _ _ _ _| ../
  ...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
.                                 5
.                                 /\                 3
.                   4            /  \           4    /\
.                   /\          /    \          /\  /
.         3        /  \     3  /      \        /  \/
.    2    /\   2  /    \    /\/        \   2  /
. 1  /\  /  \  /\/      \  /            \  /\/
. /\/  \/    \/          \/              \/
.
.(End)
		

Crossrefs

Where records occur give A000041, n>=1. Column 1 is A158478. Row j has length A187219(j). Row sums give A138137. Right border gives A000027.

Programs

  • Mathematica
    Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)

Formula

a(n) = A001511(A228354(n)). - Omar E. Pol, Aug 22 2013

Extensions

Edited by Omar E. Pol, Nov 28 2010
Better definition and edited by Omar E. Pol, Oct 17 2013

A182105 Number of elements merged by bottom-up merge sort.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 32, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8
Offset: 1

Views

Author

Dhruv Matani, Apr 12 2012

Keywords

Comments

Also triangle read by rows in which row j lists the first A001511(j) powers of 2, j >= 1, hence records give A000079. Right border gives A006519. Row sums give A038712. The equivalent sequence for partitions is A211009. See example. - Omar E. Pol, Sep 03 2013
It appears that A045412 gives the indices of the terms which are greater than 1. - Carl Joshua Quines, Apr 07 2017

Examples

			Using construction (b), the initial values n, u_n, v_n are:
  1, 1, 1
  2, 2, 1
  3, 2, 2
  4, 3, 1
  5, 4, 1
  6, 4, 2
  7, 4, 4
  8, 5, 1
  9, 6, 1
  10, 6, 2
  11, 7, 1
  12, 8, 1
  13, 8, 2
  14, 8, 4
  15, 8, 8
  16, 9, 1
  17, 10, 1
  18, 10, 2
  19, 11, 1
  20, 12, 1
  ...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (first 2^5-1 terms):
Written as an irregular triangle: T(j,k) is also the length of the k-th column in the j-th region of the diagram, as shown below. Note that the j-th row of the diagram is equivalent to the j-th composition (in colexicographic order) of 5 (cf. A228525):
------------------------------------
.          Diagram      Triangle
------------------------------------
.  j / k: 1 2 3 4 5  /  1 2 3 4 5
------------------------------------
.         _ _ _ _ _
.  1     |_| | | | |    1;
.  2     |_ _| | | |    1,2;
.  3     |_|   | | |    1;
.  4     |_ _ _| | |    1,2,4;
.  5     |_| |   | |    1;
.  6     |_ _|   | |    1,2;
.  7     |_|     | |    1;
.  8     |_ _ _ _| |    1,2,4,8;
.  9     |_| | |   |    1;
. 10     |_ _| |   |    1,2;
. 11     |_|   |   |    1;
. 12     |_ _ _|   |    1,2,4;
. 13     |_| |     |    1;
. 14     |_ _|     |    1,2;
. 15     |_|       |    1;
. 16     |_ _ _ _ _|    1,2,4,8,16;
...
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, Pre-Fascicle 6A, Section 7.2.2.2, Eq. (97).
  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley (2015) Vol. 4, Fascicle 6, Satisfiability, p. 80, Eq. (130).

Crossrefs

Cf. A046699, A215020 (a version involving Fibonacci numbers).

Programs

Formula

The following two constructions are given by Knuth:
(a) a(1) = 1; thereafter a(n+1) = 2a(n) if a(n) has already occurred an even number of times, otherwise a(n+1) = 1.
(b) Set (u_1, v_1) = (1, 1), thereafter (u_{n+1}, v_{n+1}) = ( A ? B : C)
where
A = u_n & -u_n = v_n (where the AND refers to the binary expansions),
B = (u_n + 1, 1) (the result if A is true),
C = (u_n, 2v_n) (the result if A is false).
Then v_n = A182105, u_n = A046699 minus first term.
a(n) = 2^(A082850(n)-1). - Laurent Orseau, Jun 18 2019

Extensions

Edited by N. J. A. Sloane, Aug 02 2012

A211026 Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1

Views

Author

Omar E. Pol, Oct 29 2012

Keywords

Comments

On the infinite square grid the diagram of regions of the set of partitions of n is represented by a rectangle with base = n and height = A000041(n). The rectangle contains n shells. Each shell contains regions. Each row of a region is a part. Each part of size k contains k cells. The number of regions equals the number of partitions of n (see illustrations in the links section). For a minimalist version see A139582. For the definition of "region of n" see A206437.

Crossrefs

Formula

a(n) = 2*A000041(n) + 2 = 2*A052810(n) = A139582(n) + 2.

Extensions

a(18) corrected by Georg Fischer, Apr 11 2024

A228109 Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0

Views

Author

Omar E. Pol, Aug 13 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 5, the diagram 1 represents the partitions of 5. The diagram 2 shows separately the boundary segments southwest sides of the first seven regions of the diagram 1, see below:
.
j Diagram 1 Diagram 2
7 | _ | | _
6 | _| | | _ |
5 | | | | |
4 | |_ | | | |_ |
3 | | | | | | |
2 | | | | | | | | |
1 |||_||| | | | | |_
.
. 1 2 3 4 5
.
a(n) is the height after n-th step of an infinite staircase which is the lower part of a diagram of regions of the set of partitions of all positive integers. The upper part of the diagram is the infinite Dyck path mentioned in A228110. The diagram shows the shape of the successive regions of the set of partitions of all positive integers. The area of the n-th region is A186412(n).
For the height of the peaks and the valleys in the infinite Dyck path see A229946.

Examples

			Illustration of initial terms (n = 1..53):
5
4                                                      /
3                                 /\/\                /
2                                /    \            /\/
1                   /\/\      /\/      \        /\/
0          /\    /\/    \    /          \    /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
.                                  /\
5.....................            /  \                /\
.                    /\          /    \          /\  / /
3...........        /  \        / /\/\ \        /  \/ /
2......    /\      /    \    /\/ /    \ \      /   /\/
1...  /\  /  \  /\/ /\/\ \  / /\/      \ \  /\/ /\/
0  /\/  \/ /\ \/ /\/    \ \/ /          \ \/ /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
.
Region:
.   1  2    3   4     5      6      7       8    9   10
		

Crossrefs

A228110 Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Aug 10 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The sequence gives the height of the infinite Dyck path after n-th step.
The absolute values of the first differences give A000012.
For the height of the peaks and the valleys in the infinite Dyck path see A229946.
Q: Is this infinite Dyck path a fractal?

Examples

			Illustration of initial terms (n = 1..59):
.
11 ...........................................................
.                                                            /
.                                                           /
.                                                          /
7 ..................................                      /
.                                  /\                    /
5 ....................            /  \                /\/
.                    /\          /    \          /\  /
3 ..........        /  \        /      \        /  \/
2 .....    /\      /    \    /\/        \      /
1 ..  /\  /  \  /\/      \  /            \  /\/
.  /\/  \/    \/          \/              \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
		

Crossrefs

Column 1 is A000004. Both column 2 and the right border are in A000012. Both columns 3 and 5 are in A007395.

A229946 Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 2, 1, 5, 0, 3, 2, 7, 0, 2, 1, 5, 3, 6, 5, 11, 0, 3, 2, 7, 5, 9, 8, 15, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 0, 3, 2, 7, 5, 9, 8, 15, 11, 14, 13, 19, 17, 22, 21, 30, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 15, 19, 18, 25, 23, 29, 28, 33, 32, 42, 0
Offset: 0

Views

Author

Omar E. Pol, Nov 03 2013

Keywords

Comments

Also 0 together the alternating sums of A220517.
The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The height of the peaks and the valleys of the infinite Dyck path give this sequence.
Q: Is this Dyck path a fractal?

Examples

			Illustration of initial terms (n = 0..21):
.                                                             11
.                                                             /
.                                                            /
.                                                           /
.                                   7                      /
.                                   /\                 6  /
.                     5            /  \           5    /\/
.                     /\          /    \          /\  / 5
.           3        /  \     3  /      \        /  \/
.      2    /\   2  /    \    /\/        \   2  /   3
.   1  /\  /  \  /\/      \  / 2          \  /\/
.   /\/  \/    \/ 1        \/              \/ 1
.  0 0   0     0           0               0
.
Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0.
.
Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins:
0,1;
0,2;
0,3;
0,2,1,5;
0,3,2,7;
0,2,1,5,3,6,5,11;
0,3,2,7,5,9,8,15;
0,2,1,5,3,6,5,11,7,12,11,15,14,22;
0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30;
0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42;
...
		

Crossrefs

Column 1 is A000004. Right border gives A000041 for the positive integers.

Formula

a(0) = 0; a(n) = a(n-1) + (-1)^(n-1)*A220517(n), n >= 1.

A230440 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Oct 18 2013

Keywords

Comments

The n-th row of triangle lists the parts of the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010.

Examples

			Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n  j     Diagram          Parts              Parts
---------------------------------------------------------
.         _
1  1     |_|              1;                 1;
.           _
2  1      _| |              1,                 1,
2  2     |_ _|              2;               2;
.             _
3  1         | |              1,                 1,
3  2      _ _| |              1,               1,
3  3     |_ _ _|              3;             3;
.               _
4  1           | |              1,                 1,
4  2           | |              1,               1,
4  3      _ _ _| |              1,             1,
4  4     |_ _|   |            2,2,           2,2,
4  5     |_ _ _ _|              4;           4;
.                 _
5  1             | |              1,                 1,
5  2             | |              1,               1,
5  3             | |              1,             1,
5  4             | |              1,             1,
5  5      _ _ _ _| |              1,           1,
5  6     |_ _ _|   |            3,2,         3,2,
5  7     |_ _ _ _ _|              5;         5;
.                   _
6  1               | |              1,                 1,
6  2               | |              1,               1,
6  3               | |              1,             1,
6  4               | |              1,             1,
6  5               | |              1,           1,
6  6               | |              1,           1,
6  7      _ _ _ _ _| |              1,         1,
6  8     |_ _|   |   |          2,2,2,       2,2,2,
6  9     |_ _ _ _|   |            4,2,       4,2,
6  10    |_ _ _|     |            3,3,       3,3,
6  11    |_ _ _ _ _ _|              6;       6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
		

Crossrefs

Positive terms of A228716.
Row n has length A138137(n).
Row sums give A138879.
Right border gives A000027.

A233968 Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1.

Original entry on oeis.org

2, 4, 6, 12, 16, 30, 38, 64, 84, 128, 166, 248, 314, 448, 576, 790, 1004, 1358, 1708, 2264, 2844, 3694, 4614, 5936, 7354, 9342, 11544, 14502, 17816, 22220, 27144, 33584, 40878, 50192, 60828, 74276, 89596, 108778, 130772, 157918, 189116, 227374
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2014

Keywords

Comments

Also first differences of A211978.

Examples

			Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _      |   |   |
.                             _ _ _    |             |
.                   _ _ _ _        |   |             |
.                   _ _    |           |             |
.           _ _ _      |   |           |             |
.     _ _        |         |           |             |
. _      |       |         |           |             |
.  |     |       |         |           |             |
.
. 2    4      6       12          16          30
.
Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
7..................................
.                                 /\
5....................            /  \                /\
.                   /\          /    \          /\  /
3..........        /  \        /      \        /  \/
2.....    /\      /    \    /\/        \      /
1..  /\  /  \  /\/      \  /            \  /\/
0 /\/  \/    \/          \/              \/
.  2, 4,   6,       12,           16,...
.
		

Crossrefs

Formula

a(n) = 2*(A006128(n) - A006128(n-1)) = 2*A138137(n).
Showing 1-10 of 12 results. Next