cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A190004 A190002/2.

Original entry on oeis.org

2, 4, 7, 9, 11, 14, 16, 19, 21, 23, 26, 28, 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 69, 71, 73, 76, 78, 80, 83, 85, 88, 90, 92, 95, 97, 100, 102, 104, 107, 109, 111, 114, 116, 119, 121, 123, 126, 128, 130, 133, 135, 138, 140, 142, 145, 147, 150, 152, 154, 157, 159, 161, 164, 166, 169, 171, 173, 176
Offset: 1

Views

Author

Clark Kimberling, May 03 2011

Keywords

Comments

See A180002.
First differs from A182761 at n=55: a(55)=130, A182761(55)=131. - Bruno Berselli, Jun 04 2013

Crossrefs

Programs

  • Magma
    [(n + Floor(n*(Sinh(1))^2) + Floor(n*(Cosh(1))^2))/2: n in [1..100]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    r=1; s=Sinh[1]^2; t=Cosh[1]^2;
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (* A190002 *)
    Table[b[n], {n, 1, 120}]  (* A190003 *)
    Table[c[n], {n, 1, 120}]  (* A005408 *)
    Table[a[n]/2, {n, 1, 120}](* A190004 *)
    Table[b[n]/2, {n, 1, 120}](* A182760 *)
  • PARI
    for(n=1,100, print1((n + floor(n*(sinh(1))^2) + floor(n*(cosh(1))^2))/2, ", ")) \\ G. C. Greubel, Jan 11 2018
    

Formula

A190002: a(n) = n + [n*(sinh(1))^2] + [n*(cosh(1))^2].
A190003: b(n) = n + [n*(csch(1))^2] + [n*(coth(1))^2].
A190004: a(n)/2 = (n + [n*(sinh(1))^2] + [n*(cosh(1))^2])/2.
A005408: c(n) = 2*n - 1.

A182765 Beatty sequence for (6 + sqrt(2))/4.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 25, 27, 29, 31, 33, 35, 37, 38, 40, 42, 44, 46, 48, 50, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 75, 77, 79, 81, 83, 85, 87, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 114, 116, 118, 120, 122, 124, 126, 127
Offset: 1

Views

Author

Clark Kimberling, Nov 29 2010

Keywords

Comments

Let u=(1+sqrt(2))/2 and v=sqrt(2). Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nu.

Crossrefs

Cf. A182766.

Programs

  • Mathematica
    Table[Floor[(6 + Sqrt@ 2) n/4], {n, 70}] (* Michael De Vlieger, Jun 23 2016 *)
  • PARI
    A182765(n)=n*(6+sqrt(2))\4 \\ Requires sufficient realprecision (but the 64-bit default is enough up to n = 10^38). - M. F. Hasler, Jun 23 2016

Formula

a(n) = floor(r*n), where r = (6 + sqrt(2))/4.
a(n) = 2*n - 1 - floor(n/7) for n < 41, but this fails for a(41) = 75 onwards. - M. F. Hasler, Jun 23 2016

A182766 Beatty sequence for 5 - 2*sqrt(2).

Original entry on oeis.org

2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 23, 26, 28, 30, 32, 34, 36, 39, 41, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 76, 78, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 115, 117, 119, 121, 123, 125, 128, 130, 132, 134, 136, 138, 141, 143, 145, 147, 149, 152, 154, 156, 158, 160, 162, 165, 167
Offset: 1

Views

Author

Clark Kimberling, Nov 29 2010

Keywords

Comments

Let u=(1+sqrt(2))/2 and v=sqrt(2). Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nv. A182766 is the complement of A182765.

Crossrefs

Programs

  • Magma
    [Floor(n*(5-2*Sqrt(2))): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011
    
  • Mathematica
    Table[Floor[n*(5 - 2*Sqrt[2])], {n, 1, 100}] (* G. C. Greubel, Aug 18 2018 *)
  • PARI
    vector(100,n, floor(n*(5-2*sqrt(2)))) \\ G. C. Greubel, Aug 18 2018

Formula

a(n) = floor(s*n), where s = 5 - 2*sqrt(2).

A182767 Beatty sequence for 1+e^2.

Original entry on oeis.org

8, 16, 25, 33, 41, 50, 58, 67, 75, 83, 92, 100, 109, 117, 125, 134, 142, 151, 159, 167, 176, 184, 192, 201, 209, 218, 226, 234, 243, 251, 260, 268, 276, 285, 293, 302, 310, 318, 327, 335, 343, 352, 360, 369, 377, 385, 394, 402, 411, 419, 427
Offset: 1

Views

Author

Clark Kimberling, Nov 29 2010

Keywords

Comments

Let u=e=A001113 and v=1/e=A068985. Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.

Crossrefs

Programs

  • Maple
    A182767 := proc(n) floor(n*(1+exp(2))) ; end proc:

Formula

a(n)=floor(n*(1+e^2)) = floor(n+n*A072334).

A182768 Beatty sequence for 1+e^(-2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78
Offset: 1

Views

Author

Clark Kimberling, Nov 29 2010

Keywords

Comments

Let u=e and v=1/e. Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nv. A182768 is the complement of A182767.

Crossrefs

Formula

a(n)=floor(n*(1+e^(-2))).

A182770 Beatty sequence for 3-sqrt(2).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 107, 109
Offset: 1

Views

Author

Clark Kimberling, Nov 30 2010

Keywords

Comments

Let u=1+sqrt(2) and v=sqrt(2). Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nv. A182770 is the complement of A182769.

Crossrefs

Programs

  • Magma
    [Floor(n*(3-Sqrt(2))): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011
    
  • Mathematica
    Floor[Range[70](3-Sqrt[2])] (* Harvey P. Dale, Apr 21 2013 *)
  • PARI
    vector(100, n, floor(n*(3-sqrt(2)))) \\ G. C. Greubel, Aug 18 2018

Formula

a(n) = floor(n*(3-sqrt(2))).

A182772 Beatty sequence for (5-sqrt(3))/2.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 98, 99, 101, 102, 104
Offset: 1

Views

Author

Clark Kimberling, Nov 30 2010

Keywords

Comments

Let u=1+sqrt(3) and v=sqrt(3). Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nv. A182773 is the complement of A182771.

Crossrefs

Programs

Formula

a(n) = floor(n*(5-sqrt(3))/2).

A379805 Floor of n*(1+sqrt(6))/2.

Original entry on oeis.org

0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110, 112, 113, 115, 117, 119, 120, 122, 124, 125, 127, 129, 131, 132, 134, 136, 137, 139, 141, 143, 144, 146, 148, 150, 151, 153, 155, 156, 158, 160, 162, 163
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Range[0, 100]*(1 + Sqrt[6])/2] (* Paolo Xausa, Jan 21 2025 *)

Extensions

More than the usual number of terms are shown in order to distinguish this from a very similar sequence.

A182771 Beatty sequence for (6+sqrt(3))/3.

Original entry on oeis.org

2, 5, 7, 10, 12, 15, 18, 20, 23, 25, 28, 30, 33, 36, 38, 41, 43, 46, 48, 51, 54, 56, 59, 61, 64, 67, 69, 72, 74, 77, 79, 82, 85, 87, 90, 92, 95, 97, 100, 103, 105, 108, 110, 113, 115, 118, 121, 123, 126, 128, 131, 134, 136, 139, 141, 144, 146, 149
Offset: 1

Views

Author

Clark Kimberling, Nov 30 2010

Keywords

Comments

Let u=1+sqrt(3) and v=sqrt(3). Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.

Crossrefs

Formula

a(n)=floor(n*(6+sqrt(3))/3).
Previous Showing 11-19 of 19 results.