cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A278690 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2 in powers of x.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 88, 144, 225, 351, 531, 800, 1179, 1728, 2492, 3573, 5058, 7119, 9918, 13743, 18882, 25810, 35028, 47313, 63513, 84883, 112833, 149373, 196803, 258309, 337590, 439650, 570357, 737496, 950270, 1220688, 1563021, 1995642, 2540466, 3225386
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2016

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 18*x^4 + 31*x^5 + 54*x^6 + ...
G.f. = q + 2*q^25 + 5*q^49 + 9*q^73 + 18*q^97 + 31*q^121 + 54*q^145 + ... - _Michael Somos_, Nov 25 2019
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^k: A000726 (k=1), this sequence (k=2), A273845 (k=3), A182819 (k=4).
Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), this sequence (k=3), A160461 (k=5).
Cf. A298311.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 25 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 25 2019 */

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2.
a(n) ~ sqrt(5/3)*exp(sqrt(10*n)*Pi/3)/(12*n). - Vaclav Kotesovec, Nov 26 2016
Expansion of q^(-1/24) * eta(q^3) / eta(q)^2 in powers of q. - Michael Somos, Nov 25 2019
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 3. Cf. A000041 (k = 1), A015128 (k = 2), A298311 (k = 4) and A160461 (k = 5). - Peter Bala, Nov 17 2020

A283238 Expansion of exp( Sum_{n>=1} sigma_2(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 10, 75, 447, 2335, 10977, 47667, 193775, 745819, 2738568, 9653342, 32821384, 108061167, 345622069, 1076767956, 3275039352, 9743874779, 28405248949, 81256123017, 228383836091, 631427595230, 1718990010867, 4612234492354, 12206598044861, 31889379237288
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(3*n)*x^n/n ): A182819 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} sigma_2(m*n)*x^n/n ): A000219 (m=1), A283224 (m=2), this sequence (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_2(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283244 Expansion of exp( Sum_{n>=1} sigma_3(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 28, 518, 7439, 90517, 972398, 9472190, 85145743, 715281840, 5668682493, 42691867112, 307312234334, 2124355701646, 14157081285263, 91250293831492, 570441761053192, 3466874635995098, 20526329624103412, 118608374492197651, 669949478060261642
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(3*n)*x^n/n ): A182819 (k=1), A283238 (k=2), this sequence (k=3).
Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), A282327 (m=2), this sequence (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_3(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A319362 a(n) = [x^n] exp(Sum_{k>=1} sigma(n*k)*x^k/k).

Original entry on oeis.org

1, 1, 8, 39, 385, 917, 31247, 22527, 1081986, 2464860, 50099635, 14931071, 19684696065, 394805109, 82267017929, 496514888157, 11386442827781, 284625019799, 3469798073972537, 7725084195239, 136470024990370842, 28400489198168457, 241211623942678951, 5776331152550399
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[1, n k] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Previous Showing 11-14 of 14 results.