cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A385005 The sum of the cubefull divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 121, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 109, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

The sum of the terms in A036966 that divide n.
The number of these divisors is A190867(n), and the largest of them is A360540(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), this sequence (cubefull), A385006 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p - If[e == 1, 0, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^(e+1)-1)/(p-1) - p - if(e == 1, 0, p^2));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = ((p^(e+1)-1) / (p-1)) - p - p^2 if e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - p^(s-1) + 1/p^(3*s-3)).

A349109 Powerful numbers (A001694) whose sum of powerful divisors (including 1) is also powerful.

Original entry on oeis.org

1, 64, 243, 441, 1764, 9800, 15552, 28224, 41616, 60516, 82369, 88200, 189728, 226576, 329476, 336200, 648675, 741321, 968256, 1317904, 1428025, 1707552, 1943236, 2039184, 2056356, 2381400, 2446227, 2798929, 2965284, 2986568, 4372281, 5189400, 5271616, 6508832
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

Numbers k such that A112526(k) = A112526(A183097(k)) = 1.

Examples

			64 = 2^6 is a term since it is powerful and the sum of its powerful divisors, A183097(64) =  1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n]]; Select[Range[7*10^6], q]
  • PARI
    isok(n) = ispowerful(n) && ispowerful(sumdiv(n, d, d*ispowerful(d))); \\ Michel Marcus, Nov 08 2021
    
  • PARI
    is(k) = {my(f = factor(k)); ispowerful(f) && ispowerful(prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]));} \\ Amiram Eldar, Sep 14 2024

A376217 Powerful numbers whose sum of powerful divisors (including 1) is even.

Original entry on oeis.org

9, 25, 36, 49, 72, 81, 100, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 900, 961, 968, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1369, 1444, 1521, 1568, 1600, 1681, 1764, 1800, 1849, 1936
Offset: 1

Views

Author

Amiram Eldar, Sep 16 2024

Keywords

Comments

The primitive terms of A376216: all the terms of A376216 are of the form k*m, where m is a term of this sequence and k is a squarefree number that is coprime to m.
Powerful numbers that have at least one odd prime factor in their prime factorization that has an even exponent.
Equivalently, powerful numbers whose odd part (A000265) is not an exponentially odd number (A268335).

Crossrefs

Intersection of A001694 and A376216.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], i = 2 - Mod[n, 2]}, AllTrue[f[[;;, 2]], # > 1 &] && AnyTrue[f[[i;;-1, 2]], EvenQ]]; Select[Range[2000], q]
  • PARI
    is(k) = {my(f = factor(k), i = 1 + !(k % 2)); ispowerful(f) && #select(x -> !(x%2), f[i..#f~,2]) > 0;}

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (9/7) * Product_{p prime} (1 + 1/(p*(p^2-1))) = A082695 - (9/7) * A065487 = 0.36050781682112605291... .

A183099 a(n) = sum of powerful divisors d (excluding 1) of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 28, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 60, 0, 0, 0, 49, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 28, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 124, 0, 0, 0, 4, 0, 0, 0, 129, 0, 0, 25, 4, 0, 0, 0, 28, 117, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 60, 0, 49, 9, 129
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = sum of divisors d of n from set A001694(m) - powerful numbers for m >=2.

Examples

			For n = 12, set of such divisors is {4}; a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - 1; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    A183099(n) = (sumdiv(n, d, ispowerful(d)*d) - 1); \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A000203(n) - A183100(n) = A183097(n) - 1.
a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = ((p^(k+1)-1) / (p-1))-p-1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A360722 a(n) is the sum of infinitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 49, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A183097, A360721.

Programs

  • Mathematica
    f[p_, e_] := Times @@ (p^(2^(-1 + Flatten @ Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])) + 1) - If[OddQ[e], p, 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k))+1, 1)) - if(f[i, 2]%2, f[i, 1], 0));}

Formula

Multiplicative with a(p^e) = f(p, e) if e is even, and f(p, e) - p is e is odd, where f(p, e) = Product{k>=1, e_k=1} (p^(2^k) + 1), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
a(n) <= A049417(n), with equality if and only if n is a square.
a(n) <= A183097(n), with equality if and only if n is not in A360723.

A376216 Numbers whose sum of powerful divisors (including 1) is even.

Original entry on oeis.org

9, 18, 25, 36, 45, 49, 50, 63, 72, 75, 81, 90, 98, 99, 100, 117, 121, 126, 144, 147, 150, 153, 162, 169, 171, 175, 180, 196, 198, 200, 207, 225, 234, 242, 245, 252, 261, 275, 279, 288, 289, 294, 300, 306, 315, 324, 325, 333, 338, 342, 350, 360, 361, 363, 369, 387, 392, 396, 400
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2024

Keywords

Comments

The sequence of numbers whose number of powerful divisors (including 1, A005361) is even is A072587, which is the sequence of numbers that are not exponentially odd (A268335).
The primitive terms of this sequence are the powerful terms (A376217). If m is a powerful term then k*m is a term of this sequence for all squarefree numbers k that are coprime to m.
Numbers that have at least one odd prime factor in their prime factorization that has an even exponent.
Numbers whose odd part (A000265) is not an exponentially odd number (A268335).
Also, numbers k such that A335341(k) is even.
The asymptotic density of this sequence is 1 - (6/5) * A065463 = 0.15466935880100128871... .

Crossrefs

Subsequence of A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = Select[FactorInteger[n], First[#] == 2 || Last[#] > 1 &], i = 2 - Mod[n, 2]}, Length[f] > 0 && AnyTrue[f[[i;;-1, 2]], EvenQ]]; Select[Range[400], q]
  • PARI
    is(k) = {my(f = factor(k), i = 1 + !(k % 2)); #select(x -> !(x%2), f[i..#f~,2]) > 0;}

A349110 Powerful numbers (A001694) whose sum of aliquot powerful divisors (including 1) is larger than 1 and is also powerful.

Original entry on oeis.org

128, 729, 900, 4900, 10404, 17424, 24336, 52900, 78400, 79524, 81796, 297025, 304175, 304200, 313600, 346921, 417316, 532900, 1612900, 1656200, 1960000, 2238016, 2464900, 3129361, 3232804, 3334276, 3496900, 3534400, 3992004, 6056521, 6974881, 9245000, 10672200
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

Numbers k such that A112526(k) = A112526(A183097(k) - k) = 1.

Examples

			128 = 2^7 is a term since it is powerful and the sum of its aliquot powerful divisors, A183097(128) - 128 =  1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n] - n]; Select[Range[1.1*10^7], q]
  • PARI
    isok(n) = my(s); ispowerful(n) && (s=sumdiv(n, d, if (d1) && ispowerful(s); \\ Michel Marcus, Nov 08 2021

A376204 Numbers whose sum of powerful divisors (including 1) is a powerful number that is larger than 1.

Original entry on oeis.org

64, 192, 243, 320, 441, 448, 486, 704, 832, 882, 960, 1088, 1215, 1216, 1344, 1472, 1701, 1764, 1856, 1984, 2112, 2205, 2240, 2368, 2430, 2496, 2624, 2673, 2752, 3008, 3159, 3264, 3392, 3402, 3520, 3648, 3776, 3904, 4131, 4160, 4288, 4410, 4416, 4544, 4617, 4672, 4851, 4928
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2024

Keywords

Comments

Numbers k such that A112526(A183097(k)) = 1.
The primitive terms of this sequence are the powerful terms (A349109 \ {1}). If m > 1 is a powerful term then k*m is a term of this sequence for all squarefree numbers k that are coprime to m.
The asymptotic density of this sequence is Sum_{i>=2} f(A349109(i))/A349109(i) = 0.00935344863979..., where f(k) = (6/Pi^2) * Product_{p|k} (p/(p+1)).

Crossrefs

Subsequence of A013929.
A349109 \ {1} is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[k_] := Times @@ f @@@ FactorInteger[k]; q[k_] := AllTrue[FactorInteger[k][[;; , 2]], # > 1 &]; Select[Range[5000], q[s[#]] &]
  • PARI
    s(k) = {my(f = factor(k)); prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]);}
    is(k) = {my(s1 = s(k)); s1 > 1 && ispowerful(s1);}

A385542 The sum of the aliquot divisors of n that are powerful.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 13, 1, 1, 10, 5, 1, 1, 1, 29, 1, 1, 1, 14, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 1, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 61, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 37
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 0; a[n_] := Times @@ f @@@ (fct = FactorInteger[n]) - If[AllTrue[fct[[;;, 2]], # > 1 &], n, 0]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), s); s = prod(i=1, #f~, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1) - f[i,1]); if(n==1 || vecmin(f[,2]) > 1, s -= n); s};

Formula

a(n) = Sum_{d|n, d < n} A112526(d) * d.
a(n) = A183097(n) - A112526(n) * n.
a(n) = 1 if and only if n is either a squarefree number (A005117) > 1 or a square of a prime (A001248), i.e., if and only if n is in A167207 \ {1}.
Dirichlet g.f.: (zeta(s) - 1)* zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)*(zeta(3/2)-1)/(3*zeta(3)) = 1.168033893310319119603... .
More precise asymptotics: Sum_{k=1..n} a(k) ~ (zeta(3/2) - 1)*zeta(3/2)*n^(3/2) / (3*zeta(3)) + 3*zeta(2/3)*(zeta(4/3) - 1)*n^(4/3) / (2*Pi^2) - n/2. - Vaclav Kotesovec, Jul 03 2025
Previous Showing 11-19 of 19 results.