cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A185043 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 377, 2026, 13349, 104593, 930571, 9124627, 96699740, 1095467916, 13175254799, 167460501260, 2241576473025, 31510509517563, 464047467911837, 7143984462730072, 114749034352969037, 1919656978492976231
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

4-regular simple graphs with girth exactly 3: A184943 (connected), this sequence (disconnected), A185143 (not necessarily connected).
Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), this sequence (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 4-regular simple graphs with girth exactly g: this sequence (g=3), A185044 (g=4).

Formula

a(n) = A033483(n) - A185244(n).

Extensions

Terms a(27)-a(31), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 16 2020

A184941 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184940 (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), this sequence (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

A184946 Number of connected 4-regular simple graphs on n vertices with girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 19, 0, 1272, 25, 494031, 13504
Offset: 0

Views

Author

Jason Kimberley, Feb 27 2011

Keywords

Comments

First differs from A058348 at n = A054760(4,7) = 67.

Crossrefs

Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5), this sequence (g=6).

A186743 Number of connected regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 3, 13, 21, 157, 536, 18942, 389404, 50314456, 2942196832, 1698517018391
Offset: 0

Views

Author

Jason Kimberley, Dec 01 2011

Keywords

Crossrefs

Connected k-regular simple graphs with girth exactly 3: this sequence (any k), A186733 (triangular array); specified k: A006923 (k=3),A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7),A184983 (k=8), A184993 (k=9).

Formula

a(n) = A005177(n) - A186724(n).
Previous Showing 11-14 of 14 results.