cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A349117 a(n) = Sum_{m=1..n} (Sum_{k=1..m} (Sum_{j=1..k} j^k)).

Original entry on oeis.org

1, 7, 49, 445, 5266, 77258, 1349554, 27306462, 627568355, 16142172173, 459332766227, 14324480721391, 485783513552956, 17798331858727376, 700589353757045796, 29484907446960975744, 1321168518044435497005, 62795290373559355285155, 3155553461189975793914005
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[j^k, {j, 1, k}], {k, 1, m}], {m, 1, n}], {n, 1, 20}]

Formula

a(n) ~ c * n^n, where c = 1/(1 - 1/exp(1)) = A185393 = 1/A068996 = 1.581976706...

A349964 a(n) = Sum_{k=0..n} (k*n)^n.

Original entry on oeis.org

1, 1, 20, 972, 90624, 13828125, 3133930176, 988501957072, 414139067400192, 222497518123837665, 149143419250000000000, 122020951254446884154196, 119671520043865789861724160, 138593796657903100873209121453
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (k*n)^n], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*n)^n);

Formula

a(n) = n^n * [x^n] Sum_{k>=0} (k * x)^k/(1 - k * x) = n^n * A031971(n).
a(n) ~ c * n^(2*n), where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Dec 07 2021

A052824 A simple grammar: cycles of pairs of cycles.

Original entry on oeis.org

0, 0, 2, 6, 34, 220, 1808, 17388, 194724, 2478096, 35418192, 561533280, 9785418432, 185921027136, 3825633439392, 84756646285920, 2011657535668128, 50924796197369088, 1369659967551038976, 39003791158314816768, 1172394903935534452992, 37094744191300029964800
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A185393.

Programs

  • Maple
    spec := [S,{B=Cycle(Z),C=Prod(B,B),S=Cycle(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[-Log[1-(Log[1-x])^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)

Formula

E.g.f.: log(-1/(-1+log(-1/(-1+x))^2)).
E.g.f.: -log(1-(log(1-x))^2). - Vaclav Kotesovec, Oct 01 2013
a(n) ~ (n-1)! * (exp(1)/(exp(1)-1))^n. - Vaclav Kotesovec, Oct 01 2013

Extensions

More terms from Alois P. Heinz, Mar 16 2016

A366342 a(n) = Product_{k=1..n} Sum_{j=1..k} j^k.

Original entry on oeis.org

1, 5, 180, 63720, 281961000, 18939602331000, 22733280436308624000, 561162207057469095693888000, 322278252906706683140441912431680000, 4806568058842248598039183477606983722184000000, 2055653754202086984879290521714456895014175320595424000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[j^k, {j, 1, k}], {k, 1, n}], {n, 1, 12}]
    Table[Product[HarmonicNumber[k, -k], {k, 1, n}], {n, 1, 12}] // FunctionExpand

Formula

a(n) = A002109(n) * Product_{k=1..n} Sum_{j=1..k} (j/k)^k.
a(n) ~ A002109(n) * c * d^n / n^f, where
d = 1/(1 - exp(-1)) = A185393
f = (exp(1) + 1) / (2*(exp(1) - 1)^2) = 0.629685240773129106752912520161993823...
c = 1.038111196610478473178942324022485064169644880240145128332184584611...
a(n) ~ A * c * d^n * n^(n*(n+1)/2 + 1/12 - f) / exp(n^2/4), where A is the Glaisher-Kinkelin constant A074962.

A382052 Primes prime(k) such that k*log(k)/prime(k) > (k-1)*log(k-1)/prime(k-1).

Original entry on oeis.org

3, 5, 7, 13, 19, 31, 41, 43, 47, 61, 71, 73, 83, 101, 103, 107, 109, 113, 131, 139, 151, 167, 181, 193, 197, 199, 227, 229, 233, 241, 271, 281, 283, 311, 313, 317, 337, 349, 353, 359, 373, 379, 383, 389, 401, 421, 433, 439, 443, 449, 461, 463, 467, 491, 503, 509, 523, 547, 563, 569, 571, 577, 593, 599
Offset: 1

Views

Author

Alain Rocchelli, Mar 13 2025

Keywords

Comments

All terms of this sequence are contained in A060770.
a(n) ~ prime(round(n*e/(e-1))) as n tends to infinity, cf. A185393.

Examples

			3 is a term because 2*log(2)/3 > 1*log(1)/2 and 3 is the 2nd prime following 2.
5 is a term because 3*log(3)/5 > 2*log(2)/3 and 5 is the 3rd prime following 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2, 109]],PrimePi[#]*Log[PrimePi[#]]/#>(PrimePi[#]-1)*Log[PrimePi[#]-1]/NextPrime[#,-1]&] (* James C. McMahon, Apr 14 2025 *)
  • PARI
    my(N=1); forprime(P=3, 600, my(Q=precprime(P-1), AR0=N*log(N)/Q, AR=(N+1)*log(N+1)/P); N++; if(AR>AR0, print1(P,", ")));

Formula

Limit_{n->oo} n / PrimePi(a(n)) = 1-1/e (A068996).

A306811 Decimal expansion of Pi/(Pi - 1) = 1 + 1/Pi + 1/Pi^2 + ... .

Original entry on oeis.org

1, 4, 6, 6, 9, 4, 2, 2, 0, 6, 9, 2, 4, 2, 5, 9, 8, 5, 9, 9, 8, 3, 3, 9, 4, 8, 1, 3, 2, 3, 3, 6, 6, 7, 5, 7, 3, 1, 4, 3, 2, 6, 8, 4, 0, 6, 7, 4, 3, 1, 8, 2, 3, 6, 7, 2, 5, 3, 4, 1, 3, 1, 0, 1, 6, 6, 1, 0, 9, 9, 7, 8, 5, 6, 4, 6, 4, 5, 8, 9, 1, 8, 8, 7, 5, 2, 2, 2, 3, 6, 9, 5, 5, 6, 8, 5, 4, 1, 3, 9, 6, 8, 0, 8, 1
Offset: 1

Views

Author

Giovanni Zedda, Mar 11 2019

Keywords

Comments

Apart from the first digit the same as A201775. - R. J. Mathar, Apr 09 2019

Examples

			1.4669422069242598599833948...
		

Crossrefs

Cf. A000796 (Pi), A185393 (e/(e-1)), A201775.

Programs

  • Mathematica
    RealDigits[Pi/(Pi - 1), 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)
  • PARI
    Pi/(Pi-1) \\ Michel Marcus, Mar 12 2019

Formula

Equals Sum_{j>=0} 1/(Pi^j).
Previous Showing 11-16 of 16 results.