cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A211009 Triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of j in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j), 1<=k<=A141285(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 2, 7, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 15, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 7, 22
Offset: 1

Views

Author

Omar E. Pol, Oct 21 2012

Keywords

Comments

Also the finite sequence a(1)..a(r), where a(r) is a record in the sequence, is also a finite triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of the integer whose number of partitions is equal to a(r).
T(n,k) is also 1 plus the number of holes between T(n,k) and the previous member in the column k of triangle.
T(n,k) is also the height of the column mentioned in the definition, in a three-dimensional model of the set of partitions of j, in which the regions appear rotated 90 degrees and where the pivots are the largest part of every region (see A141285). For the definition of "region" see A206437. - Omar E. Pol, Feb 06 2014

Examples

			The irregular triangle begins:
1;
1, 2;
1, 1, 3;
1, 1;
1, 1, 2, 5;
1, 1, 1;
1, 1, 1, 2, 7;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 11;
1, 1, 1;
1, 1, 1, 2, 2;
1, 1, 1, 1;
1, 1, 1, 1, 2, 4, 15;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 4;
1, 1, 1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 2, 3, 7, 22;
...
From _Omar E. Pol_, Feb 06 2014: (Start)
Illustration of initial terms:
.    _
.   |_|
.    1
.      _
.    _|_|
.   |_ _|
.    1 2
.        _
.       |_|
.    _ _|_|
.   |_ _ _|
.    1 1 3
.    _ _
.   |_ _|
.    1 1
.          _
.         |_|
.         |_|
.        _|_|
.    _ _|_ _|
.   |_ _ _ _|
.    1 1 2 5
.
(End)
		

Crossrefs

Records give positive terms of A000041. Row n has length A141285(n). Row sums give A186412.

Extensions

Better definition from Omar E. Pol, Feb 06 2014

A194438 Triangle read by rows: T(n,k) is the number of regions of the set of partitions of n into k parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 3, 1, 1, 0, 1, 0, 1, 5, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 7, 3, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 11, 4, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 15, 6, 1, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2011

Keywords

Comments

For the definition of "region" see A206437. See also A186114 and A193870. - Omar E. Pol, May 21 2021

Examples

			Triangle begins:
   1;
   1,1;
   1,1,1;
   2,1,1,0,1;
   3,1,1,0,1,0,1;
   5,2,1,0,1,0,1,0,0,0,1;
   7,3,1,0,1,0,1,0,0,0,1,0,0,0,1;
  11,4,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1;
...
		

Crossrefs

Column 1 is A194439.
Row n has length A000041(n).
Row sums give A000041, n >= 1.

Extensions

Definition clarified by Omar E. Pol, May 21 2021

A194437 Triangle read by rows: T(n,k) = sum of parts in the k-th region of n.

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 5, 2, 9, 1, 3, 5, 2, 9, 3, 12, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 2, 6, 3, 13, 5, 4, 38, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2011

Keywords

Examples

			Triangle begins:
1;
1,3;
1,3,5;
1,3,5,2,9;
1,3,5,2,9,3,12;
1,3,5,2,9,3,12,2,6,3,20;
1,3,5,2,9,3,12,2,6,3,20,3,7,4,25;
1,3,5,2,9,3,12,2,6,3,20,3,7,4,25,2,6,3,13,5,4,38;
...
Row n has length A000041(n). Row sums give A066186. Right border gives A046746. Records in every row give A046746. Rows converge to A186412.
		

Crossrefs

A182244 Sum of all parts of the shell model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 4, 9, 11, 20, 23, 35, 37, 43, 46, 66, 69, 76, 80, 105, 107, 113, 116, 129, 134, 138, 176, 179, 186, 190, 204, 207, 216, 221, 270, 272, 278, 281, 294, 299, 303, 326, 330, 340, 346, 351, 420, 423, 430, 434, 448, 451, 460, 465, 492, 497, 501, 516, 523, 529, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the shell model of partitions are [1],[2, 1],[3, 1, 1],[2], so a(4) = (1)+(2+1)+(3+1+1)+(2) = 11.
Written as a triangle begins:
1;
4;
9;
11,  20;
23,  35;
37,  43, 46, 66;
69,  76, 80,105;
107,113,116,129,134,138,176;
179,186,190,204,207,216,221,270;
272,278,281,294,299,303,326,330,340,346,351,420;
423,430,434,448,451,460,465,492,497,501,516,523,529,616;
...
From _Omar E. Pol_, Aug 08 2013: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    4      9       11       20        23        35
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       37           43           46           66
(End)
		

Crossrefs

Partial sums of A186412. Row j has length A187219(j). Right border gives A066186.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    A186412 = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
      ];
    Accumulate@A186412  (* Robert Price, Jul 25 2020 *)

Formula

a(A000041(k)) = A066186(k), k >= 1.

A220482 Triangle read by rows: T(j,k) in which row j lists the parts in nondecreasing order of the j-th region of the set of partitions of n, with 1<=j<=A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 4, 3, 1, 1, 1, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 3, 2, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 27 2013

Keywords

Comments

For the definition of "region" of the set of partitions of n see A206437.

Examples

			First 15 rows of the irregular triangle are
1;
1, 2;
1, 1, 3;
2;
1, 1, 1, 2, 4;
3;
1, 1, 1, 1, 1, 2, 5;
2;
2, 4;
3;
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6;
3;
2, 5;
4;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7;
		

Crossrefs

Positive terms of A186114. Mirror of A206437.
Row j has length A194446(j). Row sums give A186412.

A194448 Number of parts > 1 in the n-th region of the shell model of partitions.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 14, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 21, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Also triangle read by rows: T(n,k) = number of parts > 1 in the k-th region of the last section of the set of partitions of n.

Examples

			Written as a triangle:
0;
1;
1;
1,2;
1,2;
1,2,1,4;
1,2,1,4;
1,2,1,4,1,1,7;
1,2,1,4,1,2,1,8;
1,2,1,4,1,1,7,1,2,1,1,12;
1,2,1,4,1,2,1,8,1,1,3,1,1,14;
1,2,1,4,1,1,7,1,2,1,1,12,1,2,1,4,1,2,1,1,21;
		

Crossrefs

A211026 Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1

Views

Author

Omar E. Pol, Oct 29 2012

Keywords

Comments

On the infinite square grid the diagram of regions of the set of partitions of n is represented by a rectangle with base = n and height = A000041(n). The rectangle contains n shells. Each shell contains regions. Each row of a region is a part. Each part of size k contains k cells. The number of regions equals the number of partitions of n (see illustrations in the links section). For a minimalist version see A139582. For the definition of "region of n" see A206437.

Crossrefs

Formula

a(n) = 2*A000041(n) + 2 = 2*A052810(n) = A139582(n) + 2.

Extensions

a(18) corrected by Georg Fischer, Apr 11 2024

A228109 Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0

Views

Author

Omar E. Pol, Aug 13 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 5, the diagram 1 represents the partitions of 5. The diagram 2 shows separately the boundary segments southwest sides of the first seven regions of the diagram 1, see below:
.
j Diagram 1 Diagram 2
7 | _ | | _
6 | _| | | _ |
5 | | | | |
4 | |_ | | | |_ |
3 | | | | | | |
2 | | | | | | | | |
1 |||_||| | | | | |_
.
. 1 2 3 4 5
.
a(n) is the height after n-th step of an infinite staircase which is the lower part of a diagram of regions of the set of partitions of all positive integers. The upper part of the diagram is the infinite Dyck path mentioned in A228110. The diagram shows the shape of the successive regions of the set of partitions of all positive integers. The area of the n-th region is A186412(n).
For the height of the peaks and the valleys in the infinite Dyck path see A229946.

Examples

			Illustration of initial terms (n = 1..53):
5
4                                                      /
3                                 /\/\                /
2                                /    \            /\/
1                   /\/\      /\/      \        /\/
0          /\    /\/    \    /          \    /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
.                                  /\
5.....................            /  \                /\
.                    /\          /    \          /\  / /
3...........        /  \        / /\/\ \        /  \/ /
2......    /\      /    \    /\/ /    \ \      /   /\/
1...  /\  /  \  /\/ /\/\ \  / /\/      \ \  /\/ /\/
0  /\/  \/ /\ \/ /\/    \ \/ /          \ \/ /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
.
Region:
.   1  2    3   4     5      6      7       8    9   10
		

Crossrefs

A228110 Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Aug 10 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The sequence gives the height of the infinite Dyck path after n-th step.
The absolute values of the first differences give A000012.
For the height of the peaks and the valleys in the infinite Dyck path see A229946.
Q: Is this infinite Dyck path a fractal?

Examples

			Illustration of initial terms (n = 1..59):
.
11 ...........................................................
.                                                            /
.                                                           /
.                                                          /
7 ..................................                      /
.                                  /\                    /
5 ....................            /  \                /\/
.                    /\          /    \          /\  /
3 ..........        /  \        /      \        /  \/
2 .....    /\      /    \    /\/        \      /
1 ..  /\  /  \  /\/      \  /            \  /\/
.  /\/  \/    \/          \/              \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
		

Crossrefs

Column 1 is A000004. Both column 2 and the right border are in A000012. Both columns 3 and 5 are in A007395.

A229946 Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 2, 1, 5, 0, 3, 2, 7, 0, 2, 1, 5, 3, 6, 5, 11, 0, 3, 2, 7, 5, 9, 8, 15, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 0, 3, 2, 7, 5, 9, 8, 15, 11, 14, 13, 19, 17, 22, 21, 30, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 15, 19, 18, 25, 23, 29, 28, 33, 32, 42, 0
Offset: 0

Views

Author

Omar E. Pol, Nov 03 2013

Keywords

Comments

Also 0 together the alternating sums of A220517.
The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The height of the peaks and the valleys of the infinite Dyck path give this sequence.
Q: Is this Dyck path a fractal?

Examples

			Illustration of initial terms (n = 0..21):
.                                                             11
.                                                             /
.                                                            /
.                                                           /
.                                   7                      /
.                                   /\                 6  /
.                     5            /  \           5    /\/
.                     /\          /    \          /\  / 5
.           3        /  \     3  /      \        /  \/
.      2    /\   2  /    \    /\/        \   2  /   3
.   1  /\  /  \  /\/      \  / 2          \  /\/
.   /\/  \/    \/ 1        \/              \/ 1
.  0 0   0     0           0               0
.
Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0.
.
Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins:
0,1;
0,2;
0,3;
0,2,1,5;
0,3,2,7;
0,2,1,5,3,6,5,11;
0,3,2,7,5,9,8,15;
0,2,1,5,3,6,5,11,7,12,11,15,14,22;
0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30;
0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42;
...
		

Crossrefs

Column 1 is A000004. Right border gives A000041 for the positive integers.

Formula

a(0) = 0; a(n) = a(n-1) + (-1)^(n-1)*A220517(n), n >= 1.
Previous Showing 11-20 of 31 results. Next