A256695
Integer areas A of integer-sided triangles (a, b, c) such that the area of the triangle (a+b, a+c, b+c) is also an integer.
Original entry on oeis.org
12, 48, 108, 192, 300, 432, 588, 768, 972, 1008, 1200, 1452, 1728, 2028, 2352, 2448, 2520, 2700, 2772, 3060, 3072, 3468, 3888, 4032, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9072, 9408, 9792, 10080, 10092, 10800, 11088, 11532, 11628, 12240, 12288
Offset: 1
a(1) = 12 because, for (a,b,c) = (5, 5, 8) => s = (5+5+8)/2 = 9, and
A = sqrt(9(9-5)(9-5)(9-8)) = sqrt(144) = 12 and the triangle (5+5, 5+8, 5+8) = (10, 13, 13)=> s1 = (10+13+13)/2 = 18, and A1 = sqrt(18(18-10)(18-13)(18-13)) = sqrt(3600) = 60 is an integer.
-
nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);u=a+b;v=a+c;w=b+c;s1=(u+v+w)/2;area3=s1(s1-u)(s1-v)(s1-w);If[area2>0&&area3>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area3]], AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]
A283222
Integer area of integer-sided triangle such that the sides are of the form p, p+2, 2(p-1), where p, p+2 and (p-1)/2 are prime numbers.
Original entry on oeis.org
66, 6810, 182430, 105470250, 17356640970, 678676246650, 1879504308930, 4491035717130, 10618004862030, 21136679055030, 23751520478010, 27081671511090, 27596192489190, 31721097756750, 115248550935750, 133303609919430, 140838829659930, 182797297112430, 197799116497230
Offset: 1
66 is in the sequence because the area of the triangle (11, 13, 20) is given by Heron's formula with s = 22 and A = sqrt(22(22-11)(22-13)(22-20)) = 66. The numbers 11, 13 and 5 = (11-1)/2 are primes.
-
nn:=100000:
for n from 1 by 2 to nn do:
if isprime(n^2+2) and isprime(n^2+4) and isprime((n^2+1)/2)
then
printf(`%d, `,n*(2*n^2+4)):
else
fi:
od:
-
nn=10000;lst={};Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2;If[IntegerQ[s],area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]); If[area2>0&&IntegerQ[Sqrt[area2]] &&Prime[c+1] ==Prime[c]+2 && PrimeQ[(Prime[c]-1)/2], AppendTo[lst,Sqrt[area2]]]], {c,nn}];Union[lst]
-
lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isprime((p-1)/2), ca = p; cb = p+2; cc = 2*(p-1); sp = (ca+cb+cc)/2; a2 = sp*(sp-ca)*(sp-cb)*(sp-cc); if (issquare(a2), print1(sqrtint(a2), ", "));););} \\ Michel Marcus, Mar 04 2017
A283446
Integer areas of triangles with side lengths A001223(m), A001223(m+1) and A001223(m+2) for some m.
Original entry on oeis.org
24, 96, 120, 144, 168, 216, 240, 264, 336, 360, 384, 432, 456, 480, 504, 528, 576, 600, 624, 672, 720, 792, 816, 840, 864, 936, 960, 1008, 1056, 1080, 1176, 1200, 1224, 1296, 1320, 1344, 1440, 1512, 1536, 1560, 1584, 1680, 1728, 1824, 1848, 1920, 1944, 2016
Offset: 1
24 is in the sequence because, for the smallest value m = 123, we obtain the triangle of sides (A001223(123), A001223(124), A001223(125)) = (6, 8, 10) and the area is given by Heron's formula with s = 12 and A = sqrt(12(12-6)(12-8)(12-10)) = 24.
The set of the others values m > 123 giving the same area A = 24 starts with 127, 192, 269, 304, 417, 420, ...
-
nn=10^5;lst={};Do[u=Prime[a+1]-Prime[a];v=Prime[a+2]-Prime[a+1]; w=Prime[a+3]-Prime[a+2];s=(u+v+w)/2;If[IntegerQ[s],area2=s (s-u)(s-v)(s-w);If[area2>0&&IntegerQ[Sqrt[area2]],AppendTo[lst,Sqrt[area2]]]],{a,nn}];Union[lst]
A329536
Integer areas of integer-sided triangles where the lengths of two of the sides are cubes.
Original entry on oeis.org
480, 4200, 5148, 7500, 30720, 65520, 268800, 329472, 349920, 480000, 960960, 1684980, 1713660, 1884960, 1966080, 2413320, 2419560, 3061800, 3752892, 4193280, 5467500, 7500000, 8168160, 10022520, 11166960, 17203200, 17915040, 18462300, 21086208, 22394880, 28964040
Offset: 1
The following table gives the initial values of (A, a, b, c):
+--------+------+-------+-------+
| A | a | b | c |
+--------+------+-------+-------+
| 480 | 8 | 123 | 125 |
| 4200 | 70 | 125 | 125 |
| 4200 | 125 | 125 | 240 |
| 5148 | 88 | 125 | 125 |
| 5148 | 125 | 125 | 234 |
| 7500 | 125 | 125 | 150 |
| 7500 | 125 | 125 | 200 |
| 30720 | 64 | 984 | 1000 |
| 65520 | 125 | 2088 | 2197 |
| 268800 | 560 | 1000 | 1000 |
| 268800 | 1000 | 1000 | 1920 |
| 329472 | 704 | 1000 | 1000 |
| 329472 | 1000 | 1000 | 1872 |
| 349920 | 216 | 3321 | 3375 |
.................................
A351178
Integral area of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression.
Original entry on oeis.org
6, 84, 126, 156, 210, 456, 546, 570, 1116, 1170, 1176, 1554, 2046, 2220, 2394, 3096, 3216, 3294, 3354, 3924, 4740, 5124, 6006, 6180, 6510, 7326, 7446, 8760, 9030, 9264, 9906, 10374, 10920, 11466, 12684, 13104, 15210, 16170, 16296, 16716, 17556, 18060, 18090, 18354, 22134, 22860, 23550
Offset: 1
a(1) = 6 corresponds to the Pythagorean triple (3, 4, 5), this is the unique right integer-sided triangle in this sequence.
a(2) = 84 for triple (13, 14, 15) (see MacNeill link).
a(3) = 126 for triple (15, 28, 41) (see Penguin reference, entry 126).
a(4) = 156 for triple (15, 26, 37) (see MacNeill link).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 126, page 122.
- John MacNeill, 13, 14, 15 and 15, 26, 37, Mathematical Spectrum, Vol. 21, No. 3, 1989, pp. 83-84.
-
lista(nn) = {my(list = List()); for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); if (gcd([a,b,c]) == 1, my(p = (a+b+c)/2); if (issquare(x=p*(p-a)*(p-b)*(p-c)), listput(list, sqrtint(x)));););); vecsort(Vec(list));} \\ Michel Marcus, Feb 05 2022
A377418
a(n) is the smallest integer k whose set of divisors contains exactly n triples (x,y,z) of distinct divisors considered as integer-sided triangles with integer areas, or 0 if no such k exists.
Original entry on oeis.org
60, 120, 240, 360, 960, 720, 3480, 1440, 1680, 2880, 6600, 2520, 4200, 10440, 5460, 6240, 4680, 5040, 20400, 7800, 18360, 17160, 26520, 10080, 47040, 9360, 15120, 10920, 55080, 20160, 15600, 16380, 34320, 33600, 18720, 27300, 165240, 53040, 37800, 25200, 21840
Offset: 1
a(3) = 240 because there are 3 triples of divisors (3, 4, 5), (6, 8, 10) and (12, 16, 20) with integer areas 36, 576, 9216 respectively (Pythagorean triples). The first triple is primitive.
a(9)=1680 because there are 9 triples of divisors (3,4,5), (6,8,10), (7,15,20), (12,16,20), (14,30,40), (21,28,35), (28,60,80), (42,56,70), (84,112,140) with 5 Pythagorean triples : (3,4,5), (6,8,10), (21,28,35), (42,56,70), (84,112,70). The other 4 triangles are arbitrary.
-
with(numtheory):
for n from 1 to 41 do:
ii:=0:
for m from 4 to 10^7 while(ii=0) do:it:=0:
d:=divisors(m):n0:=nops(d):
for i from 2 to n0-2 do:
for j from i+1 to n0 do:
for k from j+1 to n0 do:
x:=d[i]:y:=d[j]:z:=d[k]:s:=(x+y+z)/2:A:=s*(s-x)*(s-y)*(s-z):
if A>0 and sqrt(A)=floor(sqrt(A)) then it:=it+1:else
fi:
od:
od:
od:
if it=n then printf(`%d %d \n`,it,m):ii:=1:
else fi:
od:
od:
Comments