cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A188682 Partial sums of binomials bin(3n,n)^2/(2n+1).

Original entry on oeis.org

1, 4, 49, 1057, 28282, 848101, 27357493, 928760053, 32747441926, 1188869998801, 44174723634526, 1672716549215326, 64340599136306926, 2507814491482180894, 98859670298036582494, 3935425516392739090270, 158006444406545953115743
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2/(2k+1),{k,0,n}],{n,0,20}]
    Accumulate[Table[Binomial[3n,n]^2/(2n+1),{n,0,20}]] (* Harvey P. Dale, Jul 10 2016 *)
  • Maxima
    makelist(sum(binomial(3*k,k)^2/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = sum(bin(3*k,k)^2/(2*k+1),k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(745*n^4+4502*n^3+10181*n^2+10216*n+3840) * a(n+1) +9*(9*n^2+27*n+20)^2 *a(n) = 0.
a(n) ~ 3^(6*n+7)/(713*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013

A346628 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x) * A(x)^3.

Original entry on oeis.org

1, 0, 2, 5, 22, 92, 415, 1927, 9198, 44804, 221880, 1113730, 5653747, 28975962, 149725355, 779178092, 4080167790, 21483383992, 113670233848, 604070682354, 3222823434608, 17255628041720, 92689459311470, 499359484166994, 2697571066055611, 14608820993453132
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Inverse binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x) A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 25; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 25}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(3*k,k) / (2*k + 1).
a(n) ~ 23^(n + 3/2) / (81 * sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence +2*n*(2*n+1)*a(n) -(15*n-4)*(n-1)*a(n-1) -2*(n-1)*(21*n-22)*a(n-2) -23*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 05 2021

A346680 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*k,k) / (3*k + 1).

Original entry on oeis.org

1, 0, 4, 18, 122, 847, 6237, 47583, 373149, 2989111, 24354777, 201214021, 1681719343, 14193619647, 120800146953, 1035593096367, 8934344395053, 77510878324671, 675799844685937, 5918354494345863, 52037647837001257, 459200394617540288, 4065477723321641932
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 22}]
    nmax = 22; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^3 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(4*k, k)/(3*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^3 * A(x)^4.
a(n) ~ 2^(8*n + 17/2) / (283 * sqrt(Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) -(n-1)*(229*n^2-155*n+24)*a(n-1) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Aug 05 2021

A346681 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*k,k) / (4*k + 1).

Original entry on oeis.org

1, 0, 5, 30, 255, 2275, 21476, 210404, 2120041, 21830314, 228713056, 2430255074, 26128088701, 283703487059, 3106713300821, 34270543858459, 380471319687826, 4247891403168599, 47665096853113576, 537244509843680309, 6079834137116933061, 69054467456964456599
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 21}]
    nmax = 21; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^4 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(5*k, k)/(4*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^4 * A(x)^5.
a(n) ~ 5^(5*n + 11/2) / (3381 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 30 2021

A346682 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(6*k,k) / (5*k + 1).

Original entry on oeis.org

1, 0, 6, 45, 461, 5020, 57812, 691586, 8512048, 107095262, 1371219004, 17808830924, 234048288772, 3106795261083, 41593689788637, 560980967638479, 7614970691479315, 103957059568762775, 1426355910771621805, 19658792867492660060, 272046427837226505466
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^5 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*k, k)/(5*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^5 * A(x)^6.
a(n) ~ 2^(6*n + 6) * 3^(6*n + 13/2) / (49781 * sqrt(Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

A346683 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(7*k,k) / (6*k + 1).

Original entry on oeis.org

1, 0, 7, 63, 756, 9716, 132062, 1865626, 27124049, 403197584, 6100155272, 93626517858, 1454221328232, 22815183746508, 361030984965596, 5755543515895284, 92350704790963431, 1490287557170676816, 24171116970619575559, 393808998160695560841, 6442255541764422795759
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^6 * A(x)^7.
a(n) ~ 7^(7*n + 15/2) / (870199 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

A346684 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*k,k) / (7*k + 1).

Original entry on oeis.org

1, 0, 8, 84, 1156, 17122, 268262, 4370086, 73281938, 1256608767, 21933420953, 388400019583, 6960642974905, 126008367913375, 2300862338502425, 42326714610861679, 783717720798538121, 14594469249932149279, 273161824453612674593, 5135931850101477641707
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Comments

In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(m*k,k) / ((m-1)*k + 1) ~ m^(m*(n+1) + 1/2) / (sqrt(2*Pi) * (m^m + (m-1)^(m-1)) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
    nmax = 19; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^7 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(8*k, k)/(7*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^7 * A(x)^8.
a(n) ~ 2^(24*n + 25) / (17600759 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
Previous Showing 11-17 of 17 results.