cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 74 results. Next

A323342 Numbers k whose bi-unitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

704, 1458, 2394, 7544, 10184, 46400, 60416, 106434, 115182, 118098, 121014, 125000, 129762, 141426, 147258, 150174, 156006, 158922, 164754, 176418, 185166, 190998, 199746, 202662, 217242, 220158, 228906, 237654, 243486, 246402, 252234, 260982, 263898, 278478
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The bi-unitary version of A171641.

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[n_] := Select[Divisors[n], Last@Intersection[f@#, f[n/#]] == 1 &]; fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]; seq={}; Do[s=bsigma[n]; If[OddQ[s] || s<=2n, Continue[]]; div = bdiv[n]; If[Coefficient[Times @@ (1 + x^div) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 10000}]; seq

A324706 The sum of the tri-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

A divisor d of n is tri-unitary if the greatest common bi-unitary divisor of d and n/d is 1.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; a[1]=1; a[n_]:= Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    A324706(n) = { my(f = factor(n)); prod(i=1, #f~, if(3==f[i,2], sigma(f[i,1]^f[i,2]), if(6==f[i,2], ((f[i,1]^8)-1)/((f[i,1]^2)-1), 1+(f[i,1]^f[i,2])))); }; \\ Antti Karttunen, Mar 12 2019

Formula

Multiplicative with a(p^3) = 1 + p + p^2 + p^3, a(p^6) = 1 + p^2 + p^4 + p^6, and a(p^e) = 1 + p^e otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^3 + 1/p^4 - 2/p^6 + 2/p^8 - 1/p^9 - 1/p^12 + 1/p^13) = 0.72189237802... . - Amiram Eldar, Nov 24 2022

A189000 Bi-unitary multiperfect numbers.

Original entry on oeis.org

1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240, 342720, 523776, 1028160, 1528800, 6168960, 7856640, 7983360, 14443520, 22932000, 23569920, 43330560, 44553600, 51979200, 57657600, 68796000, 133660800, 172972800, 779688000, 1476304896, 2339064000, 6840038400
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2011

Keywords

Comments

All entries greater than 1 are even [Hagis].
14443520 is the first (only?) composite term not divisible by 3. Excluding the factor p=3, all composite terms <= 172972800 have nonincreasing exponents in the factorization (sorted by primes). - D. S. McNeil, Apr 15 2011
Wall shows that 6, 60, and 90 are the only bi-unitary perfect numbers. - Tomohiro Yamada, Apr 15 2017
McNeil's observation about exponents does not hold in general. Indeed, a(41) = 2^8 * 3^5 * 5^2 * 7 * 11 * 13^2 * 17. - Giovanni Resta, Apr 15 2017
a(43) > 4.66*10^12. - Giovanni Resta, Sep 07 2018
We include 1 here, although this is not "multi"-perfect. - R. J. Mathar, Sep 08 2018

Examples

			n=120 divides A188999(120)=360.
n=90 divides A188999(90)=180.
n=672 divides A188999(672)=2016.
		

Crossrefs

Cf. A007691 (analog for sigma).
Cf. A188999 (bi-unitary sigma), A318175, A318781 (the k coefficients).

Programs

  • Mathematica
    bsig[n_] := If[n == 1, 1, Block[{p, e}, Product[{p, e} = pe; (p^(e + 1) - 1)/(p - 1) - If[EvenQ[e], p^(e/2), 0], {pe, FactorInteger[n]}]]]; Select[Range[10^5], Mod[bsig[#], #] == 0 &] (* Giovanni Resta, Apr 15 2017 *)
  • PARI
    a188999(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = ! frac(a188999(n)/n); \\ Michel Marcus, Sep 03 2018

Formula

{n | A188999(n)}.

Extensions

a(18)-a(27) by D. S. McNeil, Apr 15 2011
a(28)-a(31) from Giovanni Resta, Apr 15 2017
a(1)=1 inserted by Giovanni Resta, Sep 07 2018

A302994 Number of bi-unitary abundant numbers < 10^n.

Original entry on oeis.org

0, 14, 147, 1553, 15450, 155395, 1549818, 15498814, 155079196, 1550331185, 15503061466, 155037242668, 1550370696100, 15503650949671, 155036854371220, 1550366484701654, 15503648102080675
Offset: 1

Views

Author

Amiram Eldar, Apr 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
    DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; babQ[n_] := bsigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[babQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq
  • PARI
    biusigma(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    a(n) = sum(k=1, 10^n-1, biusigma(k) > 2*k); \\ Michel Marcus, Apr 17 2018

Formula

Conjecture: Lim_{n->oo} a(n)/10^n = 0.15... is the density of bi-unitary abundant numbers.

Extensions

a(8)-a(17) from Hiroaki Yamanouchi, Aug 24 2018

A322485 The sum of the semi-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 19, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 76, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 71, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1 (see A322483).

Examples

			The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their sum is 11, thus a(8) = 11.
		

References

  • J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e+1)/2] - 1)/(p-1) + p^e; susigma[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[susigma, 100]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k,1], e=f[k,2]); f[k,1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Dec 14 2018

Formula

Multiplicative with a(p^e) = sigma(p^floor((e-1)/2)) + p^e = (p^floor((e+1)/2) - 1)/(p-1) + p^e.
In particular a(p) = p + 1, a(p^2) = p^2 + 1, a(p^3) = p^3 + p + 1.
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.7004703314... . - Amiram Eldar, Nov 24 2022

A324276 Bi-unitary untouchable numbers: numbers that are not the sum of aliquot bi-unitary divisors of any number.

Original entry on oeis.org

2, 3, 4, 5, 38, 68, 80, 96, 98, 128, 138, 146, 158, 164, 180, 188, 192, 206, 208, 210, 212, 222, 224, 248, 264, 278, 290, 300, 304, 308, 324, 326, 328, 338, 360, 374, 380, 390, 398, 416, 418, 420, 430, 432, 458, 476, 480, 488, 498, 516, 518, 530, 536, 542, 548
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2019

Keywords

Crossrefs

Cf. A188999, A005114, A063948 (unitary), A324277 (infinitary), A324278 (exponential), A331970.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := bsigma[n] = Times @@ (fun @@@ FactorInteger[n]); untouchableQ[n_] := Catch[ Do[ If[n == bsigma[k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Sow[n]], {n, 2, 550}]][[2, 1]] (* after Jean-François Alcover at A005114 *)

A332036 Number of integers whose bi-unitary divisors sum to n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 1, 1, 0, 0, 3, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Examples

			a(12) = 2 since there are 2 solutions to bsigma(x) = 12 (bsigma is A188999): 6 and 11.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); m = 100; v = Table[0, {m}]; Do[b = bsigma[k]; If[b <= m, v[[b]]++], {k, 1, m}]; v

A335215 Bi-unitary Zumkeller numbers: numbers whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Examples

			6 is a term since its set of bi-unitary divisors, {1, 2, 3, 6}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The bi-unitary version of A083207.
Subsequence of A292982.

Programs

  • Mathematica
    uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^3], bzQ]

A361782 Numerators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 32, 9, 20, 11, 12, 13, 7, 5, 64, 17, 12, 19, 8, 21, 22, 23, 16, 25, 52, 27, 14, 29, 10, 31, 64, 11, 68, 35, 72, 37, 38, 39, 32, 41, 7, 43, 44, 3, 23, 47, 32, 49, 100, 17, 104, 53, 18, 55, 56, 57, 116, 59, 4, 61, 31, 63, 384, 65, 11, 67, 136
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Examples

			Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
		

Crossrefs

Cf. A188999, A222266, A286324, A361783 (denominators).
Similar sequences: A099377, A103339, A361316.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); numerator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = numerator(n*A286324(n)/A188999(n)).
f(n) = a(n)/A361783(n) is multiplicative with f(p^e) = (e+1)*(p-1)/(p^(e+1)-1) if e is odd, and e/((p^(e+1)-1)/(p-1) - p^(e/2)) if e is even.

A361783 Denominators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 27, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 21, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 9, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 119, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Crossrefs

Cf. A188999, A222266, A286324, A286325 (positions of 1's), A361782 (numerators).
Similar sequences: A099378, A103340, A361317.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); denominator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = denominator(n*A286324(n)/A188999(n)).
Previous Showing 41-50 of 74 results. Next