A014397
Number of loopless multigraphs with 7 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 8, 22, 60, 173, 471, 1303, 3510, 9234, 23574, 58464, 140340, 326792, 738090, 1619321, 3455129, 7180856, 14555856, 28819926, 55808840, 105834657, 196779279, 359124362, 643976482, 1135731758, 1971734302, 3372477533
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
A014398
Number of loopless multigraphs with 8 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 8, 23, 64, 197, 588, 1806, 5509, 16677, 49505, 143761, 406091, 1114890, 2970964, 7685972, 19311709, 47170674, 112123118, 259662333, 586583731, 1294143065, 2791716176, 5895027869, 12198014683, 24758285639, 49339306519
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
A036250
Number of trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 1, 2, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060, 4333718587353, 15255879756033
Offset: 0
Cf.
A000055,
A007718,
A007719,
A038052,
A191646,
A303837,
A321155,
A321229,
A321254,
A321256,
A322111.
-
max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[1 + A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)
A322147
Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 1, 1, 0, 2, 3, 0, 1, 10, 16, 0, 0, 12, 79, 125, 0, 0, 6, 162, 847, 1296, 0, 0, 1, 179, 2565, 11436, 16807, 0, 0, 0, 116, 4615, 47100, 185944, 262144, 0, 0, 0, 45, 5540, 121185, 987567, 3533720, 4782969, 0, 0, 0, 10, 4720, 220075, 3376450, 23315936, 76826061, 100000000
Offset: 0
Triangle begins:
1
1 1
0 2 3
0 1 10 16
0 0 12 79 125
0 0 6 162 847 1296
0 0 1 179 2565 11436 16807
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[If[n==0,1,Length[Select[Subsets[multsubs[Range[k],2],{n}],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,6},{k,1,n+1}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1,2)))[1..n+1]])}
{ my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ Andrew Howroyd, Nov 29 2018
A322151
Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
Offset: 0
Cf.
A000664,
A002905,
A007718,
A013922,
A054923,
A057500,
A191646,
A291842 (planar case),
A321254,
A322114,
A322115.
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[multsubs[Range[n+1],2],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018
A339160
Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) loopless multigraphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 6, 3, 1, 0, 1, 4, 11, 11, 4, 1, 0, 1, 5, 22, 33, 23, 5, 1, 0, 1, 7, 38, 89, 96, 40, 7, 1, 0, 1, 8, 63, 212, 345, 234, 70, 8, 1, 0, 1, 10, 98, 463, 1083, 1146, 546, 110, 10, 1, 0, 1, 12, 151, 943, 3068, 4739, 3505, 1169, 176, 12, 1, 0
Offset: 1
Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
1;
1, 0;
1, 1, 0;
1, 1, 1, 0;
1, 2, 2, 1, 0;
1, 3, 6, 3, 1, 0;
1, 4, 11, 11, 4, 1, 0;
1, 5, 22, 33, 23, 5, 1, 0;
1, 7, 38, 89, 96, 40, 7, 1, 0;
1, 8, 63, 212, 345, 234, 70, 8, 1, 0;
1, 10, 98, 463, 1083, 1146, 546, 110, 10, 1, 0;
1, 12, 151, 943, 3068, 4739, 3505, 1169, 176, 12, 1, 0;
...
A322152
Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
Offset: 0
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[multsubs[multsubs[Range[n+1],2],n],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018
A360866
Triangle read by rows: T(n,k) is the number of unlabeled connected loopless multigraphs with n edges on k nodes and degree >= 3 at each node, n >= 2, 1 <= k <= floor(2*n/3).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 4, 7, 0, 1, 6, 19, 6, 0, 1, 8, 40, 37, 6, 0, 1, 10, 71, 135, 56, 0, 1, 12, 117, 366, 338, 35, 0, 1, 15, 184, 858, 1417, 494, 20, 0, 1, 17, 270, 1778, 4670, 3494, 492, 0, 1, 20, 387, 3413, 13125, 17355, 6047, 251
Offset: 2
Triangle begins:
0;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 4, 7;
0, 1, 6, 19, 6;
0, 1, 8, 40, 37, 6;
0, 1, 10, 71, 135, 56;
0, 1, 12, 117, 366, 338, 35;
0, 1, 15, 184, 858, 1417, 494, 20;
0, 1, 17, 270, 1778, 4670, 3494, 492;
0, 1, 20, 387, 3413, 13125, 17355, 6047, 251;
...
A322133
Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 8, 3, 1, 0, 7, 17, 12, 3, 1, 0, 11, 46, 45, 18, 4, 1, 0, 15, 94, 141, 76, 23, 4, 1, 0, 22, 212, 432, 333, 124, 30, 5, 1, 0, 30, 416, 1231, 1254, 622, 178, 37, 5, 1, 0, 42, 848, 3346, 4601, 2914, 1058, 252, 45, 6, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
0 3 2 1
0 5 8 3 1
0 7 17 12 3 1
0 11 46 45 18 4 1
0 15 94 141 76 23 4 1
0 22 212 432 333 124 30 5 1
0 30 416 1231 1254 622 178 37 5 1
0 42 848 3346 4601 2914 1058 252 45 6 1
Non-isomorphic representatives of the multiset partitions counted in row 4:
{{1,1,1,1}} {{1,1,2,2}} {{1,2,3,3}} {{1,2,3,4}}
{{1},{1,1,1}} {{1,2,2,2}} {{1,3},{2,3}}
{{1,1},{1,1}} {{1},{1,2,2}} {{3},{1,2,3}}
{{1},{1},{1,1}} {{1,2},{1,2}}
{{1},{1},{1},{1}} {{1,2},{2,2}}
{{2},{1,2,2}}
{{1},{2},{1,2}}
{{2},{2},{1,2}}
Cf.
A000664,
A007716,
A054923,
A191646,
A191970,
A275421,
A286520,
A317672,
A319719,
A321155,
A321254,
A322114.
-
\\ Needs G(m,n) defined in A317533 (faster PARI).
InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 15 2024
A265581
Number of (unlabeled) loopless multigraphs such that the sum of the numbers of vertices and edges is n.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 16, 29, 56, 110, 222, 465, 1003, 2226, 5101, 12010, 29062, 72200, 183886, 479544, 1279228, 3486584, 9699975, 27520936, 79563707, 234204235, 701458966, 2136296638, 6611816700, 20784932424, 66333327604, 214819211047, 705650404444, 2350231740975
Offset: 0
For n = 4, the a(4) = 3 such multigraphs are the graph with four isolated vertices, the graph with three vertices and an edge between two of them, and the graph with two vertices connected by two edges.
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp and S. Rubinstein-Salzedo, Noncrossing partitions, toggles, and homomesies, arXiv:1510.06362 [math.CO], 2015.
-
\\ Needs G from A191646.
seq(n)={vector(n+1,i,1) + sum(k=1, n, concat(vector(n-k+1), G(n-k, k)))} \\ Andrew Howroyd, Feb 01 2020
Comments