cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A014397 Number of loopless multigraphs with 7 nodes and n edges.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 173, 471, 1303, 3510, 9234, 23574, 58464, 140340, 326792, 738090, 1619321, 3455129, 7180856, 14555856, 28819926, 55808840, 105834657, 196779279, 359124362, 643976482, 1135731758, 1971734302, 3372477533
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 650.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).

Crossrefs

Programs

Extensions

More terms and better description from Vladeta Jovovic, Dec 29 1999

A014398 Number of loopless multigraphs with 8 nodes and n edges.

Original entry on oeis.org

1, 1, 3, 8, 23, 64, 197, 588, 1806, 5509, 16677, 49505, 143761, 406091, 1114890, 2970964, 7685972, 19311709, 47170674, 112123118, 259662333, 586583731, 1294143065, 2791716176, 5895027869, 12198014683, 24758285639, 49339306519
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 650.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).

Crossrefs

Programs

Extensions

More terms and better description from Vladeta Jovovic, Dec 29 1999

A036250 Number of trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060, 4333718587353, 15255879756033
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Also the number of non-isomorphic connected multigraphs with loops with n edges and multiset density -1, where the multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices. - Gus Wiseman, Nov 28 2018

Crossrefs

Programs

  • Mathematica
    max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[1 + A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A036249.

A322147 Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 1, 1, 0, 2, 3, 0, 1, 10, 16, 0, 0, 12, 79, 125, 0, 0, 6, 162, 847, 1296, 0, 0, 1, 179, 2565, 11436, 16807, 0, 0, 0, 116, 4615, 47100, 185944, 262144, 0, 0, 0, 45, 5540, 121185, 987567, 3533720, 4782969, 0, 0, 0, 10, 4720, 220075, 3376450, 23315936, 76826061, 100000000
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Examples

			Triangle begins:
  1
  1     1
  0     2     3
  0     1    10    16
  0     0    12    79   125
  0     0     6   162   847  1296
  0     0     1   179  2565 11436 16807
		

Crossrefs

Row sums are A322151. Last column is A000272.
Column sums are A062740.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==0,1,Length[Select[Subsets[multsubs[Range[k],2],{n}],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,6},{k,1,n+1}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1,2)))[1..n+1]])}
    { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ Andrew Howroyd, Nov 29 2018

Extensions

Terms a(28) and beyond from Andrew Howroyd, Nov 29 2018

A322151 Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Crossrefs

Row sums of A322147. The unlabeled version is A191970.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[multsubs[Range[n+1],2],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018

A339160 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) loopless multigraphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 6, 3, 1, 0, 1, 4, 11, 11, 4, 1, 0, 1, 5, 22, 33, 23, 5, 1, 0, 1, 7, 38, 89, 96, 40, 7, 1, 0, 1, 8, 63, 212, 345, 234, 70, 8, 1, 0, 1, 10, 98, 463, 1083, 1146, 546, 110, 10, 1, 0, 1, 12, 151, 943, 3068, 4739, 3505, 1169, 176, 12, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Dec 05 2020

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
  1;
  1,  0;
  1,  1,   0;
  1,  1,   1,   0;
  1,  2,   2,   1,    0;
  1,  3,   6,   3,    1,    0;
  1,  4,  11,  11,    4,    1,    0;
  1,  5,  22,  33,   23,    5,    1,    0;
  1,  7,  38,  89,   96,   40,    7,    1,   0;
  1,  8,  63, 212,  345,  234,   70,    8,   1,  0;
  1, 10,  98, 463, 1083, 1146,  546,  110,  10,  1, 0;
  1, 12, 151, 943, 3068, 4739, 3505, 1169, 176, 12, 1, 0;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A010357.

Formula

T(n,2) = T(n,n) = 1.

A322152 Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Crossrefs

Row sums of A322148. The unlabeled version is A007719.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[multsubs[multsubs[Range[n+1],2],n],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018

A360866 Triangle read by rows: T(n,k) is the number of unlabeled connected loopless multigraphs with n edges on k nodes and degree >= 3 at each node, n >= 2, 1 <= k <= floor(2*n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 4, 7, 0, 1, 6, 19, 6, 0, 1, 8, 40, 37, 6, 0, 1, 10, 71, 135, 56, 0, 1, 12, 117, 366, 338, 35, 0, 1, 15, 184, 858, 1417, 494, 20, 0, 1, 17, 270, 1778, 4670, 3494, 492, 0, 1, 20, 387, 3413, 13125, 17355, 6047, 251
Offset: 2

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Terms may be computed using the tools geng, vcolg and multig in nauty with some additional processing to check the degrees of nodes.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 1;
  0, 1,  1;
  0, 1,  3,   2;
  0, 1,  4,   7;
  0, 1,  6,  19,    6;
  0, 1,  8,  40,   37,     6;
  0, 1, 10,  71,  135,    56;
  0, 1, 12, 117,  366,   338,    35;
  0, 1, 15, 184,  858,  1417,   494,   20;
  0, 1, 17, 270, 1778,  4670,  3494,  492;
  0, 1, 20, 387, 3413, 13125, 17355, 6047, 251;
  ...
		

Crossrefs

Row sums are A360867.
Diagonal sums are A360868.
Cf. A046752, A191646, A360862 (loops allowed).

A322133 Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 8, 3, 1, 0, 7, 17, 12, 3, 1, 0, 11, 46, 45, 18, 4, 1, 0, 15, 94, 141, 76, 23, 4, 1, 0, 22, 212, 432, 333, 124, 30, 5, 1, 0, 30, 416, 1231, 1254, 622, 178, 37, 5, 1, 0, 42, 848, 3346, 4601, 2914, 1058, 252, 45, 6, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Triangle begins:
    1
    0    1
    0    2    1
    0    3    2    1
    0    5    8    3    1
    0    7   17   12    3    1
    0   11   46   45   18    4    1
    0   15   94  141   76   23    4    1
    0   22  212  432  333  124   30    5    1
    0   30  416 1231 1254  622  178   37    5    1
    0   42  848 3346 4601 2914 1058  252   45    6    1
Non-isomorphic representatives of the multiset partitions counted in row 4:
  {{1,1,1,1}}        {{1,1,2,2}}      {{1,2,3,3}}    {{1,2,3,4}}
  {{1},{1,1,1}}      {{1,2,2,2}}      {{1,3},{2,3}}
  {{1,1},{1,1}}      {{1},{1,2,2}}    {{3},{1,2,3}}
  {{1},{1},{1,1}}    {{1,2},{1,2}}
  {{1},{1},{1},{1}}  {{1,2},{2,2}}
                     {{2},{1,2,2}}
                     {{1},{2},{1,2}}
                     {{2},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ Needs G(m,n) defined in A317533 (faster PARI).
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 15 2024

A265581 Number of (unlabeled) loopless multigraphs such that the sum of the numbers of vertices and edges is n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 56, 110, 222, 465, 1003, 2226, 5101, 12010, 29062, 72200, 183886, 479544, 1279228, 3486584, 9699975, 27520936, 79563707, 234204235, 701458966, 2136296638, 6611816700, 20784932424, 66333327604, 214819211047, 705650404444, 2350231740975
Offset: 0

Views

Author

Michael Joseph, Dec 10 2015

Keywords

Comments

Also the number of skeletal 2-cliquish graphs with n vertices. See Einstein et al. link below.
a(n) is the sum of A265580(k) as k ranges from 0 to n. This is because there is a bijection between loopless multigraphs (V,E) satisfying |V| + |E| = k with no isolated vertices and loopless multigraphs (V,E) satisfying |V| + |E| = n with exactly n-k isolated vertices.

Examples

			For n = 4, the a(4) = 3 such multigraphs are the graph with four isolated vertices, the graph with three vertices and an edge between two of them, and the graph with two vertices connected by two edges.
		

Crossrefs

Programs

  • PARI
    \\ Needs G from A191646.
    seq(n)={vector(n+1,i,1) + sum(k=1, n, concat(vector(n-k+1), G(n-k, k)))} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = Sum_{k=0..n} A265580(k).
From Andrew Howroyd, Feb 01 2020: (Start)
a(n) = Sum_{i=1..n} A192517(i, n-i) for n > 0.
Euler transform of A265582. (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020
Previous Showing 11-20 of 26 results. Next