cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A195058 Concentric 23-gonal numbers.

Original entry on oeis.org

0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Crossrefs

Column 23 of A195040.

Programs

Formula

a(n) = 23*n^2/4 + 19*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 21*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/138 + tan(sqrt(19/23)*Pi/2)*Pi/sqrt(437). - Amiram Eldar, Jan 17 2023

A195318 Centered 44-gonal numbers.

Original entry on oeis.org

1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195323 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 22*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(3*Pi/(2*sqrt(11)))/(6*sqrt(11)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+42*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(22*x^2 + 1) - 1.
a(n) = 2*A069173(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195158 Concentric 24-gonal numbers.

Original entry on oeis.org

0, 1, 24, 49, 96, 145, 216, 289, 384, 481, 600, 721, 864, 1009, 1176, 1345, 1536, 1729, 1944, 2161, 2400, 2641, 2904, 3169, 3456, 3745, 4056, 4369, 4704, 5041, 5400, 5761, 6144, 6529, 6936, 7345, 7776, 8209, 8664, 9121, 9600, 10081, 10584, 11089
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., and the same line from 1, in the direction 1, 49, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Main axis, perpendicular to A049598 in the same spiral.

Crossrefs

Column 24 of A195040.

Programs

Formula

a(n) = 6*n^2 + 5*((-1)^n-1)/2.
a(n) = -a(n-1) + A069190(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+22*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/144 + tan(sqrt(5/6)*Pi/2)*Pi/(4*sqrt(30)). - Amiram Eldar, Jan 17 2023

A270693 Alternating sum of centered 25-gonal numbers.

Original entry on oeis.org

1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2016

Keywords

Comments

The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
  • Maple
    A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
    Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
  • PARI
    x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
    

Formula

G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.
Previous Showing 11-14 of 14 results.