cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A195944 Numbers k such that 13^k has no zero in its decimal expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 10, 14
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 14 the largest term?

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | not 0 in Intseq(13^n) ]; // Vincenzo Librandi, May 06 2015
  • Mathematica
    Select[Range[0,20],DigitCount[13^#,10,0]==0&] (* Harvey P. Dale, May 24 2023 *)
  • PARI
    for( n=0,9999, is_A052382(13^n) && print1(n","))
    

Formula

Equals { n | A001022(n) is in A052382 }.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238939 Powers of 3 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 177147, 531441, 1594323, 4782969, 1162261467, 94143178827, 282429536481, 2541865828329, 7625597484987, 22876792454961, 617673396283947, 16677181699666569, 278128389443693511257285776231761
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[3^Range[0,100],DigitCount[#,10,0]==0&] (* Paolo Xausa, Oct 07 2023 *)
  • PARI
    for(n=0,99,vecmin(digits(3^n))&& print1(3^n","))

Formula

a(n) = 3^A030700(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238940 Powers of 4 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 4, 16, 64, 256, 16384, 65536, 262144, 16777216, 268435456, 4294967296, 17179869184, 68719476736, 4722366482869645213696, 75557863725914323419136, 77371252455336267181195264
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483.

Programs

  • Mathematica
    Select[4^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 31 2021 *)
  • PARI
    for(n=0,99,vecmin(digits(4^n))&& print1(4^n","))

Formula

a(n)=4^A030701(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238985 Zeroless 7-smooth numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18, 21, 24, 25, 27, 28, 32, 35, 36, 42, 45, 48, 49, 54, 56, 63, 64, 72, 75, 81, 84, 96, 98, 112, 125, 126, 128, 135, 144, 147, 162, 168, 175, 189, 192, 196, 216, 224, 225, 243, 245, 252, 256, 288, 294, 315, 324, 336
Offset: 1

Views

Author

Keywords

Comments

A001221(a(n)) <= 3 since 10 cannot divide a(n).
It seems that this sequence is finite and contains 12615 terms. - Daniel Mondot, May 03 2022 and Jianing Song, Jan 28 2023

Examples

			a(12615) = 2^25 * 3^227 * 7^28.
		

Crossrefs

Cf. A168046, intersection of A002473 and A052382.
A238938, A238939, A238940, A195948, A238936, A195908 are proper subsequences.
Cf. A059405 (subsequence), A350180 through A350187.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a238985 n = a238985_list !! (n-1)
    a238985_list = filter ((== 1) . a168046) $ f $ singleton 1 where
       f s = x : f (s' `union` fromList
                   (filter ((> 0) . (`mod` 10)) $ map (* x) [2,3,5,7]))
                   where (x, s') = deleteFindMin s
    
  • PARI
    zf(n)=vecmin(digits(n))
    list(lim)=my(v=List(),t,t1); for(e=0,log(lim+1)\log(7), t1=7^e; for(f=0,log(lim\t1+1)\log(3), t=t1*3^f; while(t<=lim, if(zf(t), listput(v, t)); t<<=1)); for(f=0,log(lim\t1+1)\log(5), t=t1*5^f; while(t<=lim, if(zf(t), listput(v, t)); t*=3))); Set(v)

Formula

A086299(a(n)) * A168046(a(n)) = 1.

Extensions

Keyword:fini and keyword:full removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A245853 Powers of 12 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 12, 144, 1728, 248832, 2985984, 429981696, 61917364224, 1283918464548864, 3833759992447475122176, 11447545997288281555215581184
Offset: 1

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Comments

Conjectured to be finite.

Crossrefs

Cf. Powers of k without the digit '0' in their decimal expansion: A238938 (k=2), A238939 (k=3), A238940 (k=4), A195948 (k=5), A238936 (k=6), A195908 (k=7), A245852 (k=8), A240945 (k=9), A195946 (k=11), this sequence (k=12), A195945 (k=13).

Programs

  • Magma
    [12^n: n in [0..3*10^4] | not 0 in Intseq(12^n)];
  • Mathematica
    Select[12^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]

A305946 Number of powers of 6 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

14, 10, 17, 16, 11, 14, 10, 8, 12, 19, 9, 16, 13, 11, 10, 10, 11, 10, 10, 17, 7, 15, 14, 16, 13, 22, 12, 17, 15, 17, 7, 6, 14, 22, 13, 19, 14, 12, 15, 7, 11, 14, 6, 12, 9, 12, 9, 14, 13, 15, 21
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 14 is the number of terms in A030702 and in A195948, which includes the power 6^0 = 1.
These are the row lengths of A305926. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030702 = row 0 of A305926: k such that 6^k has no 0's; A238936: these powers 6^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063596 = column 1 of A305926: least k such that 6^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305946(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(6^k))==n)
    
  • PARI
    A305946_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(6^k)),nMax)]++);a[^-1]}

A305945 Number of powers of 5 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

16, 16, 12, 11, 21, 12, 17, 14, 16, 17, 14, 13, 16, 18, 13, 14, 10, 10, 21, 7, 19, 13, 15, 13, 10, 15, 12, 15, 11, 11, 15, 10, 9, 15, 17, 16, 13, 12, 12, 11, 14, 9, 14, 15, 16, 14, 13, 14, 15, 24, 14
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 16 is the number of terms in A008839 and in A195948, which includes the power 5^0 = 1.
These are the row lengths of A305925. It remains an open problem to provide a proof that these rows are complete (as are all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030701 (= row 0 of A305925): k such that 5^k has no 0's; A195948: these powers 4^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063585 (= column 1 of A305925): least k such that 5^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305945(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(5^k))==n)
    
  • PARI
    A305945_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(5^k)),nMax)]++);a[^-1]}

A195985 Least prime such that p^2 is a zeroless n-digit number.

Original entry on oeis.org

2, 5, 11, 37, 107, 337, 1061, 3343, 10559, 33343, 105517, 333337, 1054133, 3333373, 10540931, 33333359, 105409309, 333333361, 1054092869, 3333333413, 10540925639, 33333333343, 105409255363, 333333333367, 1054092553583, 3333333333383, 10540925534207
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2011

Keywords

Examples

			a(1)^2=4, a(2)^2=25, a(3)^2=121, a(4)^2=1369 are the least squares of primes with 1, 2, 3 resp. 4 digits, and these digits are all nonzero.
a(5)=107 since 101^2=10201 and 103^2=10609 both contain a zero digit, but 107^2=11449 does not.
a(1000)=[10^500/3]+10210 (500 digits), since primes below sqrt(10^999) = 10^499*sqrt(10) ~ 3.162e499 have squares of less than 1000 digits, between sqrt(10^999) and 10^500/3 = sqrt(10^1000/9) ~ 3.333...e499 they have at least one zero digit. Finally, the 7 primes between 10^500/3 and a(1000) also happen to have a "0" digit in their square, but not so
  a(1000)^2 = 11111...11111791755555...55555659792849
  = [10^500/9]*(10^500+5) + 6806*10^500+104237294.
		

Crossrefs

Programs

  • PARI
    a(n)={ my(p=sqrtint(10^n\9)-1); until( is_A052382(p^2), p=nextprime(p+2));p}

A252482 Exponents n such that the decimal expansion of the power 12^n contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Conjectured to be finite.
See A245853 for the actual powers 12^a(n).

Crossrefs

For zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A245852, A240945 (k=9), A195946 (x=11), A245853, A195945; A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, this sequence A252482, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))

A306115 Largest k such that 5^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

58, 85, 107, 112, 127, 157, 155, 194, 198, 238, 323, 237, 218, 301, 303, 324, 339, 476, 321, 284, 496, 421, 475, 415, 537, 447, 494, 538, 531, 439, 473, 546, 587, 588, 642, 690, 769, 689, 687, 686, 757, 732, 683, 826, 733, 825, 833, 810, 827, 888, 966
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A008839: exponents of powers of 5 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063585: least k such that 5^k has n digits 0 in base 10.
Cf. A305945: number of k's such that 5^k has n digits 0.
Cf. A305925: row n lists exponents of 5^k with n digits 0.
Cf. A008839: { k | 5^k has no digit 0 } : row 0 of the above.
Cf. A195948: { 5^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306115_vec(nMax,M=99*nMax+199,x=5,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}
Previous Showing 11-20 of 20 results.