cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 85 results. Next

A301469 Signed recurrence over enriched r-trees: a(n) = 2 * (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

2, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 3, 3, 6, 7, 11, 17, 23, 35, 53, 75, 119, 173, 264, 398, 603, 911, 1411, 2114, 3279, 4977, 7696, 11760, 18253, 27909, 43451, 66675, 103945, 160096, 249904, 385876, 603107, 933474, 1461967, 2266384, 3553167, 5521053, 8664117, 13485744
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=2(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]

Formula

O.g.f.: 2/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t 2^k * (-1)^w where the sum is over all enriched r-trees of size n, k is the number of leaves, and w is the sum of leaves.

A319118 Number of multimin tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 8, 1, 2, 2, 24, 1, 6, 1, 8, 2, 2, 1, 42, 2, 2, 6, 8, 1, 8, 1, 112, 2, 2, 2, 38, 1, 2, 2, 42, 1, 8, 1, 8, 8, 2, 1, 244, 2, 6, 2, 8, 1, 24, 2, 42, 2, 2, 1, 58, 1, 2, 8, 568, 2, 8, 1, 8, 2, 8, 1, 268, 1, 2, 6, 8, 2, 8, 1, 244, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.

Examples

			The a(12) = 8 multimin tree-factorizations:
  12,
  (2*6), (4*3), (6*2), (2*2*3),
  (2*(2*3)), ((2*2)*3), ((2*3)*2).
Or as series-reduced plane trees of multisets:
  112,
  (1,12), (11,2), (12,1), (1,1,2),
  (1,(1,2)), ((1,1),2), ((1,2),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[mmftrees[n]],{n,100}]

Formula

a(prime^n) = A118376(n).
a(product of n distinct primes) = A005804(n).

A330784 Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 9, 28, 36, 16, 1, 13, 69, 160, 164, 61, 1, 20, 160, 580, 1022, 855, 272, 1, 28, 337, 1837, 4996, 7072, 4988, 1385
Offset: 2

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

Examples

			Triangle begins:
    1
    1    1
    1    3    2
    1    5    9    5
    1    9   28   36   16
    1   13   69  160  164   61
    1   20  160  580 1022  855  272
    1   28  337 1837 4996 7072 4988 1385
Row n = 5 counts the following multisystems (strings of 1's are replaced by their lengths):
  5  {1,4}      {{1},{1,3}}      {{{1}},{{1},{1,2}}}
     {2,3}      {{1},{2,2}}      {{{1,1}},{{1},{2}}}
     {1,1,3}    {{2},{1,2}}      {{{1}},{{2},{1,1}}}
     {1,2,2}    {{3},{1,1}}      {{{1,2}},{{1},{1}}}
     {1,1,1,2}  {{1},{1,1,2}}    {{{2}},{{1},{1,1}}}
                {{1,1},{1,2}}
                {{2},{1,1,1}}
                {{1},{1},{1,2}}
                {{1},{2},{1,1}}
		

Crossrefs

Row sums are A318813.
Column k = 3 is A007042.
Column k = 4 is A001970(n) - 3*A000041(n) + 3.
Column k = n is A000111.
Row n is row prime(n) of A330727.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(n,3) = A000041(n) - 2.
T(n,4) = A001970(n) - 3 * A000041(n) + 3.

A301754 Number of ways to choose a strict rooted partition of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 18, 29, 44, 67, 100, 150, 217, 326, 470, 690, 1011, 1463, 2099, 3049, 4355, 6214, 8886, 12632, 17885, 25377, 35763, 50252, 70942, 99246, 138600, 193912, 270286, 375471, 522224, 723010, 1000435, 1383002, 1907724, 2624492, 3613885
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(8) = 13 rooted twice-partitions:
(6), (51), (42), (321),
(5)(), (41)(), (32)(), (4)(1), (31)(1), (3)(2), (21)(2),
(3)(1)(), (21)(1)().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1+PartitionsQ[n-1]x^n,{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(prod(k=1, n-1, 1 + u[k]*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} (1 + A000009(n-1) x^n).

A319119 Number of multimin tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 3, 9, 37, 173, 921, 5185, 30497, 184469, 1140413, 7170085, 45704821
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 9 multimin tree-factorizations:
  5, 6, 8,
  (2*3), (2*4), (4*2), (2*2*2),
  (2*(2*2)), ((2*2)*2).
Or as series-reduced plane trees of multisets:
  3, 12, 111,
  (1,2), (1,11), (11,1), (1,1,1),
  (1,(1,1)), ((1,1),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Sum[Length[mmftrees[k]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,7}]

Extensions

a(11)-a(12) from Robert Price, Sep 14 2018

A330726 Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.

Original entry on oeis.org

1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
Offset: 0

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

Examples

			The a(1) = 1 through a(5) = 17 multisystems (commas elided):
  {1}  {2}   {3}        {4}               {5}
       {11}  {12}       {22}              {23}
             {{1}{11}}  {13}              {14}
                        {{1}{12}}         {{1}{13}}
                        {{2}{11}}         {{1}{22}}
                        {{{1}}{{1}{11}}}  {{2}{12}}
                        {{{11}}{{1}{1}}}  {{3}{11}}
                                          {{{1}}{{1}{12}}}
                                          {{{11}}{{1}{2}}}
                                          {{{1}}{{2}{11}}}
                                          {{{12}}{{1}{1}}}
                                          {{{2}}{{1}{11}}}
                                          {{{{1}}}{{{1}}{{1}{11}}}}
                                          {{{{1}}}{{{11}}{{1}{1}}}}
                                          {{{{1}{1}}}{{{1}}{{11}}}}
                                          {{{{1}{11}}}{{{1}}{{1}}}}
                                          {{{{11}}}{{{1}}{{1}{1}}}}
		

Crossrefs

The case with all atoms equal to 1 is A000111.
The non-maximal version is A330679.
A tree version is A320160.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

A305572 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 2, 0, 10, 4, 2, 32, 2, 4, 42, 0, 2, 228, 2, 32, 138, 4, 2, 1536, 34, 4, 1514, 32, 2, 3940, 2, 0, 2058, 4, 162, 102944, 2, 4, 8202, 1536, 2, 51940, 2, 32, 207370, 4, 2, 3538944, 130, 3204, 131082, 32, 2, 15668836, 2082, 1536, 524298, 4, 2, 54327840
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[n/y]^y,{y,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305572(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,A305572(n/d)^d))); \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = Sum_t (-1)^(n-k) where the sum is over all same-trees of weight n (see A281145 for definition) and k is the number of leaves.

A305610 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} binomial(a(n/d) + d - 1, d).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 2, 0, 6, 3, 2, 11, 2, 3, 12, 0, 2, 38, 2, 11, 14, 3, 2, 90, 8, 3, 68, 11, 2, 127, 2, 0, 18, 3, 16, 1194, 2, 3, 20, 90, 2, 173, 2, 11, 644, 3, 2, 5158, 10, 68, 24, 11, 2, 12762, 20, 90, 26, 3, 2, 12910, 2, 3, 1386, 0, 22, 289, 2, 11, 30, 219, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Binomial[a[n/d]+d-1,d],{d,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305610(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,binomial(A305610(n/d)+d-1, d)))); \\ Antti Karttunen, Dec 05 2021

A318485 Number of p-trees of weight 2n + 1 in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 107, 336, 1037, 3367, 10924, 36438, 121045, 412789, 1398168, 4831708, 16636297, 58084208, 202101971, 712709423, 2502000811, 8880033929, 31428410158, 112199775788, 399383181020, 1433385148187, 5128572792587, 18481258241133
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2018

Keywords

Comments

A p-tree of weight n with odd outdegrees is either a single node (if n = 1) or a finite odd-length sequence of at least 3 p-trees with odd outdegrees whose weights are weakly decreasing and sum to n.

Examples

			The a(4) = 13 p-trees of weight 9 with odd outdegrees:
  ((((ooo)oo)oo)oo)
  (((ooo)(ooo)o)oo)
  (((ooo)oo)(ooo)o)
  ((ooo)(ooo)(ooo))
  (((ooooo)oo)oo)
  (((ooo)oooo)oo)
  ((ooooo)(ooo)o)
  (((ooo)oo)oooo)
  ((ooo)(ooo)ooo)
  ((ooooooo)oo)
  ((ooooo)oooo)
  ((ooo)oooooo)
  (ooooooooo)
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Table[b[n],{n,1,20,2}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 27 2018

A330785 Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   3   2
   0   1   5   8   4
   0   1   9  25  28  11
   0   1  13  57 111  99  33
   0   1  20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
  ()  (14)    (113)->(14)    (1112)->(113)->(14)
      (23)    (113)->(23)    (1112)->(113)->(23)
      (113)   (122)->(14)    (1112)->(122)->(14)
      (122)   (122)->(23)    (1112)->(122)->(23)
      (1112)  (1112)->(14)
              (1112)->(23)
              (1112)->(113)
              (1112)->(122)
		

Crossrefs

Row sums are A213427.
Main diagonal is A002846.
Column k=3 is A007042.
Dominated by A330784.
The version for set partitions is A008826.
The version for factorizations is A330935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
    paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
    Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]

Formula

T(n,k) = A330935(2^n,k).
Previous Showing 71-80 of 85 results. Next