A008826
Triangle of coefficients from fractional iteration of e^x - 1.
Original entry on oeis.org
1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2
Triangle starts:
1;
1, 3;
1, 13, 18;
1, 50, 205, 180;
1, 201, 1865, 4245, 2700;
1, 875, 16674, 74165, 114345, 56700;
1, 4138, 155477, 1208830, 3394790, 3919860, 1587600;
...
The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
Alternating row sums are signed factorials
A133942(n-1).
Cf.
A000110,
A000111,
A000258,
A002846,
A005121,
A008277,
A306186,
A317176,
A318813,
A320154,
A330667,
A330679,
A330784.
-
b:= proc(n) option remember; expand(`if`(n=1, 1,
add(Stirling2(n, j)*b(j)*x, j=0..n-1)))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=1..n-1), n=2..10); # Alois P. Heinz, Mar 31 2023
-
a[n_, x_] := Sum[ StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; a[1, ] = 1; Table[ CoefficientList[ a[n, x], x] // Rest, {n, 2, 10}] // Flatten (* _Jean-François Alcover, Dec 11 2012, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
tots[m_]:=Prepend[Join@@Table[tots[p],{p,Select[sps[m],1Gus Wiseman, Jan 02 2020 *)
A330727
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
Final terms in each row are
A330728.
Column k = 3 is
A318284(n) - 2 for n > 2.
Cf.
A000111,
A002846,
A005121,
A292504,
A318812,
A318813,
A318847,
A318848,
A318849,
A330475,
A330666,
A330935.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330785
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
The version for set partitions is
A008826.
The version for factorizations is
A330935.
Cf.
A000111,
A000258,
A000311,
A005121,
A141268,
A196545,
A265947,
A300383,
A306186,
A317141,
A317176,
A318813,
A320160,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
Showing 1-3 of 3 results.
Comments