cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A196722 Number of subsets of {1..n} (including empty set) such that the pairwise LCMs of elements are not distinct.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 23, 30, 38, 47, 58, 69, 83, 96, 111, 128, 144, 161, 181, 200, 223, 246, 269, 292, 319, 344, 371, 398, 429, 458, 496, 527, 559, 594, 629, 668, 708, 745, 784, 825, 870, 911, 962, 1005, 1052, 1102, 1149, 1196, 1248, 1297, 1349, 1402, 1457, 1510
Offset: 0

Views

Author

Alois P. Heinz, Oct 05 2011

Keywords

Comments

All pairwise LCMs of each subset are equal if there are any.

Examples

			A(6) = 23: {}, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}, {2,3,6}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s) local sn, m;
          m:= nops(s);
          sn:= [s[], n];
          `if`(n<1, 1, b(n-1, s) +`if`(1 >= nops(({seq(seq(
               ilcm(sn[i], sn[j]), j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
        end:
    a:= proc(n) option remember;
          b(n-1, [n]) +`if`(n=0, 0, a(n-1))
        end:
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n<1, 1, b[n-1, s] + If[1 >= Length @ Union @ Flatten @ Table[ LCM[ sn[[i]], sn[[j]]], {i, 1, m}, {j, i+1, m+1}], b[n-1, sn], 0]]];
    a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 12 2017, translated from Maple *)

A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product.

Original entry on oeis.org

390, 780, 798, 1170, 1365, 1560, 1596, 1914, 1950, 2340, 2394, 2590, 2730, 2886, 3120, 3192, 3510, 3828, 3900, 3990, 4095, 4290, 4386, 4485, 4680, 4788, 5070, 5170, 5180, 5460, 5586, 5742, 5772, 5850, 6042, 6240, 6384, 6630, 6699, 6825, 7020, 7182, 7410, 7656
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   390: {1,2,3,6}
   780: {1,1,2,3,6}
   798: {1,2,4,8}
  1170: {1,2,2,3,6}
  1365: {2,3,4,6}
  1560: {1,1,1,2,3,6}
  1596: {1,1,2,4,8}
  1914: {1,2,5,10}
  1950: {1,2,3,3,6}
  2340: {1,1,2,2,3,6}
  2394: {1,2,2,4,8}
  2590: {1,3,4,12}
  2730: {1,2,3,4,6}
  2886: {1,2,6,12}
  3120: {1,1,1,1,2,3,6}
  3192: {1,1,1,2,4,8}
  3510: {1,2,2,2,3,6}
  3828: {1,1,2,5,10}
  3900: {1,1,2,3,3,6}
  3990: {1,2,3,4,8}
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A326114 Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 44, 76, 116, 222, 444, 788, 1576, 3068, 5740, 8556, 17112, 31752, 63504, 116176, 221104, 438472, 876944, 1569424, 2447664, 4869576, 9070920, 17022360, 34044720, 61923312, 123846624, 234698720, 462007072, 922838192, 1734564112, 2591355792, 5182711584
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

The strict case is A326117.
Also the number of subsets of {2..n} containing all of their integer products <= n. For example, the a(1) = 1 through a(5) = 12 subsets are:
{} {} {} {} {} {}
{2} {2} {3} {3}
{3} {4} {4}
{2,3} {2,4} {5}
{3,4} {2,4}
{2,3,4} {3,4}
{3,5}
{4,5}
{2,3,4}
{2,4,5}
{3,4,5}
{2,3,4,5}

Examples

			The a(1) = 1 through a(5) = 12 subsets:
  {}  {}   {}     {}     {}
      {2}  {2}    {2}    {2}
           {3}    {3}    {3}
           {2,3}  {4}    {4}
                  {2,3}  {5}
                  {3,4}  {2,3}
                         {2,5}
                         {3,4}
                         {3,5}
                         {4,5}
                         {2,3,5}
                         {3,4,5}
		

Crossrefs

Formula

a(n > 0) = A326076(n)/2.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019

A308542 Number of subsets of {2..n} containing the product of any set of distinct elements whose product is <= n.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1184, 2368, 4448, 8056, 15008, 30016, 52736, 105472, 183424, 339840, 663616, 1327232, 2217088, 4434176, 8744320, 16559168, 30034624, 60069248, 103402112, 206804224, 379941440, 730800064, 1454649248, 2659869664, 4786282208
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

First differs from A326116 at a(12) = 1184, A326116(12) = 1232.
If this sequence counts product-closed sets, A326116 counts product-free sets.

Examples

			The a(6) = 28 sets:
  {}  {2}  {2,4}  {2,3,6}  {2,3,4,6}  {2,3,4,5,6}
      {3}  {2,5}  {2,4,5}  {2,3,5,6}
      {4}  {2,6}  {2,4,6}  {2,4,5,6}
      {5}  {3,4}  {2,5,6}  {3,4,5,6}
      {6}  {3,5}  {3,4,5}
           {3,6}  {3,4,6}
           {4,5}  {3,5,6}
           {4,6}  {4,5,6}
           {5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]

Formula

For n > 0, a(n) = A326081(n)/2.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019
Previous Showing 21-24 of 24 results.