cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A220989 a(n) = 12^(2n+1) - 6 * 12^n + 1: the left Aurifeuillian factor of 12^(6n+3) + 1.

Original entry on oeis.org

7, 1657, 247969, 35821441, 5159655937, 743006877697, 106993187463169, 15407021359595521, 2218611104160546817, 319479999339664244737, 46005119908998197280769, 6624737266944778960896001, 953962166440636632998608897
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220990.

Crossrefs

Programs

  • Mathematica
    Table[12^(2n+1) - 6 * 12^n + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 12^(6n+3) + 1 = (12^(2n+1) + 1) * a(n) * A220990(n).
G.f.: -(1008*x^2+558*x+7) / ((x-1)*(12*x-1)*(144*x-1)). [Colin Barker, Jan 03 2013]

A199191 Numbers k such that 3^(2k-3) + 3^(k-1) + 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 10, 11, 41, 83, 160, 178, 526, 881, 2578, 3772, 11873
Offset: 1

Views

Author

Michel Lagneau, Nov 03 2011

Keywords

Comments

Numbers k such that A198410(k) is prime.

Crossrefs

Programs

  • Mathematica
    Select[Range[250], PrimeQ[((3^(#-1) + 1)^3 -1)/3^#]&]

Extensions

a(16) from Michael S. Branicky, May 12 2023

A199192 Primes of the form 3^(2n-3)+3^(n-1)+1.

Original entry on oeis.org

7, 37, 271, 2269, 19927, 129159847, 1162320517, 49269609804781974450852068861184694669, 589881151426658740854227725580736348850640632297373414091790995505756623268837
Offset: 1

Views

Author

Michel Lagneau, Nov 03 2011

Keywords

Comments

The corresponding n are in A199191.
The next term -- a(10) -- has 152 digits. - Harvey P. Dale, May 28 2015

Crossrefs

Programs

  • Mathematica
    a={}; Do[p=( (3^(n-1) + 1)^3 -1)/3^n; If[PrimeQ[p], AppendTo[a, p]], {n, 10^2}]; Print[a];
    Select[Table[3^(2n-3)+3^(n-1)+1,{n,100}],PrimeQ] (* Harvey P. Dale, May 28 2015 *)

Formula

Primes in A198410.

A220985 The left Aurifeuillian factor of 10^(20n+10) + 1.

Original entry on oeis.org

3541, 904806804901, 99004980069800499001, 9990004998000699800049990001, 999900004999800006999800004999900001, 99999000004999980000069999800000499999000001, 9999990000004999998000000699999800000049999990000001
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220986.

Crossrefs

Programs

  • Mathematica
    Table[10^(8n+4) - 10^(7n+4) + 5 * 10^(6n+3) - 2 * 10^(5n+3) + 7 * 10^(4n+2) - 2 * 10^(3n+2) + 5 * 10^(2n+1) - 10^(n+1) + 1, {n, 0, 20}]

Formula

a(n) = 10^(8n+4) - 10^(7n+4) + 5 * 10^(6n+3) - 2 * 10^(5n+3) + 7 * 10^(4n+2) - 2 * 10^(3n+2) + 5 * 10^(2n+1) - 10^(n+1) + 1.
Aurifeuillian factorization: 10^(20n+10) + 1 = (10^(4n+2) + 1) * a(n) * A220986(n).

A220986 The right Aurifeuillian factor of 10^(20n + 10) + 1.

Original entry on oeis.org

27961, 1105207205101, 101005020070200501001, 10010005002000700200050010001, 1000100005000200007000200005000100001, 100001000005000020000070000200000500001000001, 10000010000005000002000000700000200000050000010000001
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220985.

Crossrefs

Programs

  • Mathematica
    a[n_] := 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1

Formula

a(n) = 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1
Aurifeuillian factorization: 10^(20n + 10) + 1 = (10^(4n + 2) + 1) * A220985(n) * a(n)
Previous Showing 11-15 of 15 results.