cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A364375 G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^3).

Original entry on oeis.org

1, 0, -1, 2, 0, -11, 28, 1, -206, 564, 38, -4711, 13329, 1273, -119762, 344707, 41884, -3251250, 9445976, 1381154, -92305098, 269504686, 45848871, -2707126108, 7921304973, 1532928960, -81375728566, 238196143730, 51591751698, -2493907008116, 7293147604136
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2023

Keywords

Crossrefs

Programs

  • Maple
    A364375 := proc(n)
        add( (-1)^k*binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k)/(n+2*k+1),k=0..n) ;
    end proc:
    seq(A364375(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+2*k+1, k)*binomial(n+2*k+1, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1).
D-finite with recurrence +2*n*(191553133*n -462036810)*(2*n+1) *(n+1)*a(n) +2*n*(6735679202*n^3 -31340869996*n^2 +39568451245*n -13340358389)*a(n-1) +6*(13937077342*n^4 -106287464449*n^3 +278022830194*n^2 -296712736455*n +108876423952)*a(n-2) +6*(42118990776*n^4 -422141236704*n^3 +1546534911485*n^2 -2448212978721*n +1409411956166)*a(n-3) +6*(72631772298*n^4 -948761263665*n^3 +4512788370945*n^2 -9254886913710*n +6888712179986)*a(n-4) +3*(10147840245*n^4 -513806508936*n^3 +5519825354705*n^2 -22028093493130*n +30003008863784)*a(n-5) +6*(-9503341830*n^4 +235269814455*n^3 -2064338754902*n^2 +7709425316943*n -10409244067330)*a(n-6) +18*(3*n-20)*(n-6) *(156488131*n-746235854) *(3*n-13)*a(n-7)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Aug 24 2024: (Start)
G.f. A(x) satisfies (1/x) * series_reversion(x*A(x)) = 1/G(x), where G(x) is the g.f. of A364371.
P-recursive: fifth-order recurrence: (2*n+1)*(2*n+2)*(3045*n^5-26680*n^4+84901*n^3-123566*n^2+86300*n-25368)*n*a(n) + 6*(18270*n^7-160080*n^6+500851*n^5-666969*n^4+307749*n^3+70849*n^2-76222*n+8288)*n*a(n-1) + 6*(54810*n^8-562455*n^7+2191158*n^6-3956204*n^5+2960986*n^4+88959*n^3-1045774*n^2+187688*n+69888)*a(n-2) + 6*(109620*n^8-1289340*n^7+5897421*n^6-13016841*n^5+13725877*n^4-5967199*n^3+2484230*n^2-3359528*n+1002624)*a(n-3) - 6*(54810*n^8-726885*n^7+3719313*n^6-9080919*n^5+10367473*n^4-4378276*n^3+1152956*n^2-2297912*n+768096)*a(n-4) + (3*n-7)*(3*n-12)*(3*n-14)*(3045*n^5-11455*n^4+8631*n^3+1507*n^2+2376*n-1368)*a(n-5) = 0 with a(0) = 1, a(1) = 0, a(2) = -1, a(3) = 2 and a(4) = 0. (End)

A200725 G.f. A(x) satisfies A(x) = (1+x^2)*(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=-3.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...
Related expansion:
A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...
where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +
(1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +
(1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +
(1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...
which involves the squares of the binomial coefficients C(n,k).
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(3*k)) ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (1 - x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^(3*k) ).
Recurrence: 2*(n-4)*(n-2)*n*(2*n+1)*a(n) = 3*(n-4)*(n-2)*(3*n-2)*(3*n-1)*a(n-1) - 2*(n-4)*(n-2)*n*(2*n-1)*a(n-2) + 6*(n-4)*(3*n-8)*(6*n^2 - 17*n + 2)*a(n-3) + 6*(3*n-14)*(9*n^3 - 66*n^2 + 114*n - 4)*a(n-5) + 6*n*(3*n-20)*(6*n^2 - 47*n + 78)*a(n-7) + 3*(n-2)*n*(3*n-26)*(3*n-19)*a(n-9). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ c*d^n/n^(3/2), where d = 7.1535029565... is the root of the equation -27 - 81*d^2 - 81*d^4 - 27*d^6 + 4*d^7 = 0 and c = 0.26300783791885411389369671... - Vaclav Kotesovec, Aug 19 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-6*k+1,k) * binomial(3*n-6*k+1,n-2*k)/(3*n-6*k+1). - Seiichi Manyama, Dec 17 2024

A216359 G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x/A(x)).

Original entry on oeis.org

1, 2, 3, 13, 32, 147, 445, 2067, 7019, 32590, 119209, 551551, 2125429, 9795863, 39221165, 180177403, 742575760, 3403131833, 14342166121, 65626369612, 281459129188, 1286834885967, 5596229192396, 25580269950635, 112492633046446, 514323765191879, 2282371511598955
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.209619875959405379599013693... with A(r) = 2.36951367232829409921688546894691317519410... where y=A(r) satisfies y^7 - 2*y^6 - 4*y^4 + 4*y^3 + 4*y - 2 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + 445*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 10*x^2 + 38*x^3 + 125*x^4 + 500*x^5 + 1839*x^6 +...
A(x)^3 = 1 + 6*x + 21*x^2 + 83*x^3 + 315*x^4 + 1269*x^5 + 5061*x^6 +...
where A(x) = (1-x^2)*A(x)^2 - x*A(x)^3 - x.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 1/A(x)^3)*x*A(x) + (1 + 2^2/A(x)^3 + 1/A(x)^6)*x^2*A(x)^2/2 +
(1 + 3^2/A(x)^3 + 3^2/A(x)^6 + 1/A(x)^9)*x^3*A(x)^3/3 +
(1 + 4^2/A(x)^3 + 6^2/A(x)^6 + 4^2/A(x)^9 + 1/A(x)^12)*x^4*A(x)^4/4 +
(1 + 5^2/A(x)^3 + 10^2/A(x)^6 + 10^2/A(x)^9 + 5^2/A(x)^12 + 1/A(x)^15)*x^5*A(x)^5/5 +...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(x+y+x^2*y^2-y^2+x*y^3, y, 1), x, 41):
    seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1-x^2)*AGF^2 - x*AGF^3 - x - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^2)*(1 + x/(A+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(3*j))*x^m*A^m/m))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f. satisfies:
A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 / A(x)^(3*k) ).
The formal inverse of the g.f. A(x) is (sqrt(1 - 2*x^3 + 4*x^4 + x^6) - (1+x^3))/(2*x^2).
Recurrence: n*(n+1)*(1241*n^5 - 21306*n^4 + 135203*n^3 - 381522*n^2 + 435524*n - 104880)*a(n) = 6*n*(1201*n^4 - 19476*n^3 + 114613*n^2 - 287442*n + 255364)*a(n-1) + 2*(12410*n^7 - 237880*n^6 + 1771109*n^5 - 6388366*n^4 + 11032829*n^3 - 6363274*n^2 - 3856020*n + 4157712)*a(n-2) + 6*(2482*n^7 - 51299*n^6 + 419427*n^5 - 1705769*n^4 + 3477465*n^3 - 2797370*n^2 - 637684*n + 1410288)*a(n-3) + 2*(4964*n^7 - 110044*n^6 + 983093*n^5 - 4442260*n^4 + 10160177*n^3 - 8790970*n^2 - 4722180*n + 9233280)*a(n-4) - 6*(2482*n^7 - 58745*n^6 + 553921*n^5 - 2617109*n^4 + 6255337*n^3 - 6022682*n^2 - 1392300*n + 4289616)*a(n-5) + 60*(n-7)*(2*n - 11)*(n^3 - 40*n^2 + 280*n - 552)*a(n-6) + 2*(n-8)*(2*n - 13)*(1241*n^5 - 15101*n^4 + 62389*n^3 - 91339*n^2 - 930*n + 64260)*a(n-7). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 4.77053998540509708... is the root of the equation -4 + 12*d^2 - 8*d^3 - 12*d^4 - 20*d^5 + d^7 = 0 and c = 1.27852844884923435863262213680985089152... - Vaclav Kotesovec, Sep 18 2013
In closed form, c = (-4 + (1 + sqrt(1+8/d^2))*d^2) * sqrt((d^3*(1 + sqrt(1+8/d^2) + (4*(4 + d^2*(-3-sqrt(1+8/d^2) + d*(4+d))))/d^6)) / (1 + 1/64*(1 + sqrt(1+8/d^2)-4/d^2)^3*d^3)) / (32*d). - Vaclav Kotesovec, Aug 18 2014
From Peter Bala, Sep 10 2024: (Start)
For n not of the form 3*m + 1, we conjecture that a(n) = Sum_{k = 0..n} binomial(-n+3*k+1, k)*binomial(-n+3*k+1, n-k)/(-n+3*k+1).
Define a sequence operator R: {u(n): n >= 0} -> {v(n): n >= 0} by Sum_{n >= 0} v(n)*x^n = (1/x) * series_reversion(x/Sum_{n >= 0} u(n)*x^n). Then R({a(n)}) = A364336, R^2({a(n)}) = A215623 and R^3({a(n)}) = A364331. Cf. A073157. (End)

A379190 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.

Original entry on oeis.org

1, 4, 30, 304, 3557, 45150, 604222, 8393282, 119872890, 1749183075, 25964512607, 390828464403, 5951561595889, 91523131078999, 1419293428538496, 22169968253466467, 348507676062911520, 5509187208564734328, 87522347516801353980, 1396619714730284551913, 22375420057050167868366
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+6*k+3,n-k)/(n+2*k+1).

A379328 G.f. A(x) satisfies A(x) = sqrt( (1 + 2*x*A(x)^3) * (1 + 2*x*A(x)) ).

Original entry on oeis.org

1, 2, 8, 44, 272, 1808, 12616, 91136, 675712, 5112576, 39316480, 306402304, 2414543328, 19207303168, 154030314752, 1243912552448, 10107398806016, 82573989969920, 677862373390592, 5588755066388480, 46257005500080128, 384210240316375040, 3201482490107076608
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+k+1/2, k)*binomial(n/2+k+1/2, n-k)/(n+2*k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+k+1/2,k) * binomial(n/2+k+1/2,n-k)/(n+2*k+1).

A364340 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).

Original entry on oeis.org

1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+5*k+1,k) * binomial(n+5*k+1,n-k) / (n+5*k+1).

A211248 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^4).

Original entry on oeis.org

1, 1, 4, 20, 114, 703, 4565, 30752, 212921, 1505916, 10833164, 79018804, 583062388, 4344431508, 32641910199, 247033970128, 1881402836376, 14408753414558, 110897147057354, 857307054338476, 6653979156676983, 51831065993122915, 405060413133136902, 3175019470333290488
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2 and q=1.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 114*x^4 + 703*x^5 + 4565*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 85*x^3 + 522*x^4 + 3381*x^5 + 22735*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 132*x^3 + 841*x^4 + 5588*x^5 + 38288*x^6 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 343*x^3 + 2429*x^4 + 17430*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^4 + x^3*A(x)^7.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x))*x*A(x)^2 + (1 + 2^2*x*A(x) + x^2*A(x)^2)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x) + 3^2*x^2*A(x)^2 + x^3*A(x)^3)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x) + 6^2*x^2*A(x)^2 + 4^2*x^3*A(x)^3 + x^4*A(x)^4)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x) + 10^2*x^2*A(x)^2 + 10^2*x^3*A(x)^3 + 5^2*x^4*A(x)^4 + x^5*A(x)^5)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x) + 15^2*x^2*A(x)^2 + 20^2*x^3*A(x)^3 + 15^2*x^4*A(x)^4 + 6^2*x^5*A(x)^5 + x^6*A(x)^6)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 49*x^3/3 + 359*x^4/4 + 2706*x^5/5 + 20767*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1 - x - x^3)^2/(1 + x^2)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-x-x^3)^2/(1+x^2+x*O(x^n))^2 ) ), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^3)^2/(1+x^2)^2 ) ).
(2) A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
(3) a(n) = [x^n] ((1+x^2)/(1-x-x^3))^(2*n+2) / (n+1).
(4) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^k) * x^n*A(x)^(2*n)/n ).
(5) A(x) = exp( Sum_{n>=1} (1-x*A(x))^(2*n+1) * (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k) * x^n*A(x)^(2*n)/n ).
(6) A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) = (1 + x*G(x)^2)*(1 + x^2*G(x)^2) is the g.f. of A199874.
a(n) ~ s * sqrt((1 + 2*r*s + 3*r^2*s^4) / (3*Pi*(1 + 2*r*s + 7*r^2*s^4))) / (2*n^(3/2)*r^n), where r = 0.1194948955213353102456218138370139612914667337222... and s = 1.428770161302757679335810379290625953730830139744... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^4) = s, r*s^2*(3 + 4*r*s + 7*r^2*s^4) = 1. - Vaclav Kotesovec, Nov 22 2017

A211249 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^5).

Original entry on oeis.org

1, 1, 4, 21, 126, 819, 5611, 39900, 291719, 2179181, 16560175, 127617168, 994951887, 7833555324, 62196300997, 497425570173, 4003607595960, 32404662671330, 263586896132154, 2153631763231319, 17666722629907960, 145449082369322208, 1201414340736684702
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2 and q=2.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 819*x^5 + 5611*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 88*x^3 + 564*x^4 + 3828*x^5 + 27040*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 195*x^3 + 1335*x^4 + 9486*x^5 + 69305*x^6 +...
A(x)^8 = 1 + 8*x + 60*x^2 + 448*x^3 + 3374*x^4 + 25704*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^8.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^2)*x*A(x)^2 +
(1 + 2^2*x*A(x)^2 + x^2*A(x)^4)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x)^2 + 3^2*x^2*A(x)^4 + x^3*A(x)^6)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x)^2 + 6^2*x^2*A(x)^4 + 4^2*x^3*A(x)^6 + x^4*A(x)^8)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x)^2 + 10^2*x^2*A(x)^4 + 10^2*x^3*A(x)^6 + 5^2*x^4*A(x)^8 + x^5*A(x)^10)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x)^2 + 15^2*x^2*A(x)^4 + 20^2*x^3*A(x)^6 + 15^2*x^4*A(x)^8 + 6^2*x^5*A(x)^10 + x^6*A(x)^12)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 52*x^3/3 + 403*x^4/4 + 3211*x^5/5 + 26050*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1-2*x-x^2+x^4 + (1-x-x^2) * Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n)))/2 ) ), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j,j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f.: sqrt( (1/x)*Series_Reversion( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) ))/2 ) ).
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) is the g.f. of A200075.
(2) A(x) = sqrt( (1/x)*Series_Reversion( x/G(x)^2 ) ) where A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) and 1+x*G(x) is the g.f. of A004148.
(3) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(2*k)) * x^n*A(x)^(2*n)/n ).
(4) A(x) = exp( Sum_{n>=1} (1-x*A(x)^2)^(2*n+1) * (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2*k)) * x^n*A(x)^(2*n)/n ).
a(n) ~ s * sqrt((1 + 2*r*s^2 + 3*r^2*s^5) / (Pi*(3 + 10*r*s^2 + 28*r^2*s^5))) / (2*n^(3/2)*r^n), where r = 0.1130413665724951344267888513870607581680912144315... and s = 1.385648922830296011590145919380626723251960276539... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^5) = s, r*s^2*(3 + 5*r*s^2 + 8*r^2*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017

A379249 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^2.

Original entry on oeis.org

1, 3, 18, 148, 1403, 14417, 156161, 1755664, 20293341, 239654554, 2879027132, 35072400492, 432238230583, 5379422216020, 67513288465855, 853481985400772, 10858099927189575, 138912471444569435, 1786014309638224994, 23065160118446902506, 299062458173041384523
Offset: 0

Views

Author

Seiichi Manyama, Dec 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(2*n+4*k+2, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(2*n+4*k+2,n-k)/(n+2*k+1).
Previous Showing 21-29 of 29 results.