cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A198953 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.095007017562450871521918431664620... with A(r) = 1.6228790124092133906198298670423120590101223122... where y=A(r) satisfies 2*y^5 + 6*y^4 - 18*y^3 + 6*y^2 - 3 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • Maxima
    a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A073157 (Schroeder n-paths containing no FFs).
The formal inverse of g.f. A(x) is (sqrt((1-x^2)^2 + 4*x^3) - (1+x^2)) / (2*x^3).
D-finite with recurrence: 2*n*(n+1)*(2*n+1)*(1275*n^5 - 11696*n^4 + 36827*n^3 - 40618*n^2 - 5828*n + 25368)*a(n) = 6*n*(2*n - 1)*(7650*n^6 - 66351*n^5 + 183953*n^4 - 102147*n^3 - 314787*n^2 + 450754*n - 137760)*a(n-1) - 6*(n-1)*(2*n - 3)*(34425*n^6 - 281367*n^5 + 690471*n^4 - 86579*n^3 - 1831014*n^2 + 2230808*n - 685440)*a(n-2) + 6*(22950*n^8 - 279378*n^7 + 1275447*n^6 - 2461807*n^5 + 518525*n^4 + 5756973*n^3 - 9486182*n^2 + 5962912*n - 1303680)*a(n-3) - 6*(22950*n^8 - 313803*n^7 + 1633059*n^6 - 3736233*n^5 + 1886879*n^4 + 7909228*n^3 - 16107824*n^2 + 11531408*n - 2756544)*a(n-4) + 3*(n-4)*(3*n - 14)*(3*n - 7)*(1275*n^5 - 5321*n^4 + 2793*n^3 + 12437*n^2 - 16992*n + 5328)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 10.5255382776611313... is the root of the equation -27 + 108*d - 108*d^2 + 324*d^3 - 72*d^4 + 4*d^5 = 0 and c = 0.5321376859604656812266678970406658537671... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1)))*(-1)^(n-j)*binomial(2*n-j,n-j)). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1). - Seiichi Manyama, Jul 19 2023

A364374 G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^2).

Original entry on oeis.org

1, 0, -1, 1, 2, -6, -1, 28, -31, -98, 288, 131, -1730, 1638, 7431, -19583, -15502, 135642, -99523, -664050, 1535896, 1816196, -11902728, 5944326, 64487669, -129346490, -213116764, 1112382523, -277762230, -6572175490, 11287106695, 25078981772, -107983368519, -1826241850
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2023

Keywords

Crossrefs

Programs

  • Maple
    A364374 := proc(n)
        add( (-1)^k*binomial(n+k+1,k) * binomial(n+k+1,n-k)/(n+k+1),k=0..n) ;
    end proc:
    seq(A364374(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • Mathematica
    nmax = 33;
    A[_] = 1;
    Do[A[x_] = (1+x*A[x])*(1-x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k+1, k)*binomial(n+k+1, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1).
D-finite with recurrence 15*n*(n+1)*a(n) +2*n*(13*n-11)*a(n-1) +12*(9*n^2-19*n+9)*a(n-2) +2*(10*n^2-65*n+99)*a(n-3) -4*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
A(x) = (1/x) * series_reversion(x*(1 + x + x^2)/(1 + x)). - Peter Bala, Sep 08 2024

A364371 G.f. satisfies A(x) = (1 + x) * (1 - x*A(x)^2).

Original entry on oeis.org

1, 0, -1, 2, -2, -1, 9, -20, 20, 24, -150, 327, -293, -599, 3097, -6452, 4854, 15878, -71252, 140112, -81328, -437346, 1746254, -3214989, 1223971, 12345295, -44552833, 76242173, -11292089, -354175849, 1167638037, -1842585992, -233903034, 10273377388, -31169512310
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2023

Keywords

Crossrefs

Programs

  • Maple
    A364371 := proc(n)
        add((-1)^k* binomial(2*k+1,k) * binomial(2*k+1,n-k)/(2*k+1),k=0..n) ;
    end proc:
    seq(A364371(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*k+1, k)*binomial(2*k+1, n-k)/(2*k+1));

Formula

G.f.: A(x) = 2*(1 + x) / (1 + sqrt(1+4*x*(1 + x)^2)).
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*k+1,k) * binomial(2*k+1,n-k) / (2*k+1).
D-finite with recurrence (n+1)*a(n) +(5*n-1)*a(n-1) +6*(2*n-3)*a(n-2) +6*(2*n-5)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Aug 24 2024: (Start)
A(x) = (1 + x)*c(-x*(1+x)^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
(1/x) * series_reversion(x/A(x)) = 1 - x^2 + 2*x^3 - 11*x^5 + 28*x^6 + ..., the g.f. of A364375. (End)

A364376 G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^4).

Original entry on oeis.org

1, 0, -1, 3, -4, -9, 73, -212, 111, 1956, -10078, 21466, 29823, -418183, 1561911, -1722963, -13205004, 86962328, -232448945, -109578204, 3849218852, -17135183489, 27800381006, 113891855632, -966644138742, 3075070731677, -833503324311, -41673632701038
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+3*k+1, k)*binomial(n+3*k+1, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n+3*k+1,k) * binomial(n+3*k+1,n-k) / (n+3*k+1).
G.f.: x/series_reversion(x*G(x)), where G(x) = 1 - x^2 + 3*x^3 - 6*x^4 + 6*x^5 + 15*x^6 - ... is the g.f. of A364372. - Peter Bala, Aug 27 2024
Showing 1-4 of 4 results.