cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 136 results. Next

A200011 Decimal expansion of greatest x satisfying x^2 - cos(x) = sin(x).

Original entry on oeis.org

1, 1, 4, 9, 5, 5, 4, 6, 2, 7, 2, 7, 7, 4, 7, 3, 1, 8, 9, 0, 6, 9, 5, 2, 2, 4, 9, 4, 7, 4, 4, 4, 0, 9, 0, 2, 0, 1, 1, 3, 9, 6, 8, 1, 7, 7, 9, 1, 3, 9, 2, 4, 4, 8, 1, 3, 1, 9, 2, 5, 2, 4, 8, 6, 3, 4, 8, 5, 5, 1, 5, 3, 5, 9, 0, 5, 7, 3, 7, 8, 3, 9, 3, 2, 6, 2, 5, 3, 2, 9, 9, 1, 6, 6, 5, 1, 2, 9, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.560987729235911375277437028533668231799...
greatest x: 1.14955462727747318906952249474440902011...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200010 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200011 *)
  • PARI
    a=1; b=-1; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A200012 Decimal expansion of least x satisfying x^2 - cos(x) = 2*sin(x) (negated).

Original entry on oeis.org

3, 9, 4, 1, 2, 4, 1, 9, 2, 8, 5, 8, 9, 7, 5, 9, 6, 0, 0, 9, 9, 7, 0, 5, 3, 9, 9, 3, 5, 4, 5, 9, 0, 0, 9, 8, 5, 3, 6, 9, 2, 2, 4, 9, 6, 1, 9, 3, 9, 1, 2, 2, 9, 7, 9, 2, 1, 9, 8, 4, 8, 1, 1, 6, 8, 5, 3, 1, 1, 8, 7, 4, 1, 7, 6, 0, 2, 4, 8, 1, 7, 9, 3, 5, 8, 3, 4, 5, 6, 0, 3, 0, 7, 1, 7, 9, 2, 1, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.3941241928589759600997053993545900...
greatest x: 1.450938449634974431128285576690357738...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200012 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200013 *)
  • PARI
    a=1; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A200013 Decimal expansion of greatest x satisfying x^2 - cos(x) = 2*sin(x).

Original entry on oeis.org

1, 4, 5, 0, 9, 3, 8, 4, 4, 9, 6, 3, 4, 9, 7, 4, 4, 3, 1, 1, 2, 8, 2, 8, 5, 5, 7, 6, 6, 9, 0, 3, 5, 7, 7, 3, 8, 9, 4, 4, 7, 4, 8, 7, 0, 1, 1, 5, 3, 4, 6, 3, 9, 8, 7, 6, 5, 4, 2, 3, 5, 8, 6, 2, 6, 2, 9, 6, 1, 9, 2, 8, 4, 3, 0, 8, 1, 3, 5, 0, 5, 9, 1, 7, 2, 0, 8, 4, 3, 0, 4, 9, 7, 0, 9, 4, 6, 6, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.3941241928589759600997053993545900...
greatest x: 1.450938449634974431128285576690357...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200012 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200013 *)
  • PARI
    a=1; b=-1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A200014 Decimal expansion of least x satisfying x^2 - cos(x) = 3*sin(x), negated.

Original entry on oeis.org

2, 9, 4, 3, 4, 8, 7, 7, 2, 3, 3, 5, 6, 8, 6, 3, 9, 8, 3, 6, 9, 6, 5, 7, 8, 9, 0, 2, 0, 3, 6, 1, 9, 5, 0, 3, 0, 8, 6, 7, 2, 1, 9, 9, 0, 0, 5, 9, 4, 0, 0, 3, 2, 8, 8, 8, 6, 8, 4, 1, 8, 0, 1, 6, 5, 1, 9, 9, 9, 8, 1, 5, 0, 7, 0, 7, 8, 4, 3, 8, 3, 5, 7, 8, 4, 4, 7, 6, 2, 2, 5, 3, 2, 2, 6, 0, 3, 9, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.2943487723356863983696578902036195...
greatest x: 1.690779738969815334957504857558809...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.3, -.29}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200014 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200015 *)
  • PARI
    a=1; b=-1; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A200015 Decimal expansion of greatest x satisfying x^2 - cos(x) = 3*sin(x).

Original entry on oeis.org

1, 6, 9, 0, 7, 7, 9, 7, 3, 8, 9, 6, 9, 8, 1, 5, 3, 3, 4, 9, 5, 7, 5, 0, 4, 8, 5, 7, 5, 5, 8, 8, 0, 9, 5, 4, 3, 4, 2, 1, 3, 2, 4, 1, 6, 3, 9, 0, 6, 5, 4, 5, 2, 8, 5, 4, 4, 5, 1, 8, 3, 8, 5, 4, 9, 7, 2, 6, 1, 2, 8, 7, 2, 5, 7, 1, 9, 9, 7, 4, 5, 7, 7, 4, 3, 1, 6, 6, 2, 4, 6, 8, 3, 9, 3, 9, 2, 8, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.2943487723356863983696578902036195...
greatest x: 1.690779738969815334957504857558809...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.3, -.29}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200014 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200015 *)
  • PARI
    a=1; b=-1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

Extensions

a(88)-a(99) corrected by G. C. Greubel, Jun 23 2018

A200016 Decimal expansion of least x satisfying x^2 - cos(x) = 4*sin(x) (negated).

Original entry on oeis.org

2, 3, 1, 9, 3, 1, 7, 3, 6, 5, 0, 8, 0, 7, 7, 0, 6, 8, 2, 7, 9, 2, 1, 6, 2, 9, 5, 0, 7, 8, 0, 8, 0, 1, 1, 5, 5, 2, 8, 9, 5, 6, 6, 7, 4, 9, 1, 7, 6, 0, 4, 6, 3, 1, 5, 8, 1, 2, 1, 7, 4, 2, 7, 6, 4, 9, 1, 9, 4, 3, 4, 9, 1, 6, 1, 6, 1, 4, 6, 5, 4, 1, 6, 9, 0, 8, 8, 3, 0, 5, 2, 0, 0, 8, 3, 6, 2, 8, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.231931736508077068279216295078080...
greatest x: 1.87520068875669013700099544270224...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.24, -.23}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200016 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.87, 1.88}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200017 *)
  • PARI
    a=1; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200017 Decimal expansion of greatest x satisfying x^2 - cos(x) = 4*sin(x).

Original entry on oeis.org

1, 8, 7, 5, 2, 0, 0, 6, 8, 8, 7, 5, 6, 6, 9, 0, 1, 3, 7, 0, 0, 0, 9, 9, 5, 4, 4, 2, 7, 0, 2, 2, 4, 9, 1, 3, 9, 1, 5, 1, 8, 7, 1, 7, 6, 0, 4, 2, 4, 5, 7, 9, 4, 7, 0, 6, 9, 5, 5, 6, 0, 1, 4, 9, 5, 6, 5, 1, 5, 3, 3, 6, 8, 6, 6, 1, 5, 7, 7, 6, 9, 0, 2, 9, 6, 4, 3, 2, 2, 4, 4, 2, 9, 3, 0, 2, 1, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.231931736508077068279216295078080...
greatest x: 1.87520068875669013700099544270224...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.24, -.23}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200016 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.87, 1.88}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200017 *)
  • PARI
    a=1; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200018 Decimal expansion of least x satisfying x^2 - 2*cos(x) = sin(x) (negated).

Original entry on oeis.org

8, 0, 9, 6, 2, 9, 9, 9, 9, 1, 2, 9, 5, 5, 2, 4, 1, 3, 1, 8, 6, 1, 0, 9, 6, 9, 8, 4, 8, 4, 0, 2, 7, 1, 3, 2, 1, 9, 6, 6, 9, 1, 7, 6, 0, 3, 5, 6, 5, 4, 5, 3, 7, 8, 5, 3, 8, 9, 4, 7, 8, 4, 6, 3, 2, 9, 8, 3, 6, 9, 0, 8, 2, 3, 2, 1, 6, 6, 6, 8, 3, 9, 6, 9, 0, 1, 7, 5, 9, 9, 6, 0, 8, 6, 5, 1, 2, 5, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.8096299991295524131861096984840271321...
greatest x: 1.254187962477919553363912326321801374...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.9, -.8}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200018 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200019 *)
  • PARI
    a=1; b=-2; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200019 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = sin(x).

Original entry on oeis.org

1, 2, 5, 4, 1, 8, 7, 9, 6, 2, 4, 7, 7, 9, 1, 9, 5, 5, 3, 3, 6, 3, 9, 1, 2, 3, 2, 6, 3, 2, 1, 8, 0, 1, 3, 7, 4, 2, 6, 0, 6, 2, 4, 1, 3, 8, 6, 9, 8, 6, 9, 2, 8, 5, 1, 5, 7, 7, 7, 5, 1, 6, 0, 3, 0, 8, 2, 5, 6, 2, 2, 5, 8, 3, 8, 4, 0, 8, 2, 4, 8, 4, 9, 2, 4, 2, 6, 4, 5, 9, 4, 9, 4, 6, 1, 3, 9, 5, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.8096299991295524131861096984840271321...
greatest x: 1.254187962477919553363912326321801374...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.9, -.8}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200018 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200019 *)
  • PARI
    a=1; b=-2; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200020 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 2*sin(x) (negated).

Original entry on oeis.org

6, 4, 0, 0, 4, 9, 1, 9, 1, 1, 4, 2, 5, 7, 7, 1, 1, 5, 7, 3, 9, 8, 3, 5, 2, 6, 9, 6, 7, 5, 8, 4, 1, 2, 0, 1, 2, 9, 6, 6, 3, 4, 6, 8, 4, 7, 7, 3, 3, 5, 0, 9, 7, 1, 1, 0, 6, 6, 7, 1, 3, 8, 2, 1, 5, 6, 7, 3, 9, 6, 0, 7, 9, 0, 4, 4, 6, 2, 3, 0, 8, 5, 8, 3, 7, 5, 0, 9, 3, 3, 0, 9, 7, 6, 3, 5, 8, 9, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.64004919114257711573983526967584120...
greatest x: 1.476368748380920391671696889789836416...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.65, -.64}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200020 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.47, 1.48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200021 *)
  • PARI
    a=1; b=-2; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Previous Showing 31-40 of 136 results. Next