cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 64 results. Next

A201396 Decimal expansion of the number x satisfying x^2+x+2=e^x.

Original entry on oeis.org

2, 2, 0, 4, 1, 1, 7, 7, 3, 3, 1, 7, 1, 6, 2, 0, 2, 9, 5, 9, 9, 0, 9, 5, 4, 8, 7, 7, 7, 3, 2, 3, 8, 4, 9, 5, 3, 5, 8, 6, 5, 9, 8, 9, 3, 9, 9, 3, 0, 0, 9, 7, 9, 4, 2, 1, 1, 7, 4, 4, 7, 7, 4, 9, 2, 0, 2, 1, 1, 8, 2, 3, 8, 6, 5, 9, 0, 1, 0, 7, 3, 0, 3, 3, 5, 9, 3, 8, 3, 0, 8, 0, 9, 8, 4, 6, 5, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.2041177331716202959909548777323849535865...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201396 *)

A201562 Decimal expansion of the number x satisfying x^2+x+3=e^x.

Original entry on oeis.org

2, 4, 2, 5, 6, 2, 2, 4, 5, 6, 9, 6, 5, 4, 4, 2, 2, 3, 4, 3, 8, 7, 5, 1, 8, 8, 0, 9, 4, 8, 5, 0, 9, 2, 0, 3, 3, 8, 1, 8, 2, 8, 2, 1, 1, 5, 7, 2, 4, 2, 5, 9, 5, 1, 0, 5, 9, 0, 8, 6, 2, 4, 3, 0, 7, 7, 7, 7, 8, 7, 6, 1, 9, 2, 3, 5, 3, 7, 3, 1, 0, 7, 4, 2, 3, 2, 2, 8, 6, 5, 0, 0, 0, 2, 0, 3, 9, 7, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.42562245696544223438751880948509203381828211...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.4, 2.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201562 *)

A201742 Decimal expansion of the number x satisfying x^2+3=e^x.

Original entry on oeis.org

1, 8, 7, 3, 1, 2, 2, 5, 4, 7, 7, 1, 3, 0, 4, 3, 3, 2, 1, 7, 2, 0, 5, 9, 7, 0, 9, 6, 7, 5, 4, 2, 5, 7, 1, 0, 4, 0, 8, 3, 5, 2, 7, 4, 0, 2, 6, 5, 0, 3, 9, 2, 5, 1, 4, 2, 8, 0, 1, 7, 1, 8, 7, 2, 9, 4, 1, 3, 2, 0, 4, 2, 4, 5, 8, 0, 2, 0, 6, 1, 7, 4, 9, 3, 7, 4, 7, 9, 3, 8, 4, 6, 4, 8, 1, 6, 7, 3, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.87312254771304332172059709675425710408...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201742 *)

A201743 Decimal expansion of the number x satisfying x^2+4=e^x.

Original entry on oeis.org

2, 1, 5, 8, 7, 2, 6, 0, 6, 4, 4, 8, 1, 2, 2, 4, 6, 2, 4, 1, 4, 0, 2, 4, 0, 7, 5, 4, 8, 1, 3, 8, 5, 6, 7, 1, 7, 7, 5, 5, 9, 0, 7, 4, 1, 5, 7, 7, 7, 6, 7, 1, 4, 4, 8, 1, 8, 8, 9, 1, 8, 6, 8, 7, 0, 6, 0, 8, 7, 1, 9, 1, 2, 4, 9, 3, 2, 1, 3, 0, 0, 3, 1, 3, 3, 2, 4, 6, 9, 2, 4, 2, 5, 8, 6, 0, 0, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.1587260644812246241402407548138567177...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.1, 2.2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201743 *)

A201744 Decimal expansion of the number x satisfying x^2+5=e^x.

Original entry on oeis.org

2, 3, 5, 6, 3, 5, 3, 4, 8, 9, 8, 5, 7, 1, 5, 4, 3, 6, 2, 4, 2, 0, 2, 5, 9, 2, 3, 5, 5, 6, 8, 1, 4, 8, 9, 7, 8, 8, 6, 9, 7, 2, 1, 5, 1, 5, 0, 5, 4, 4, 6, 8, 0, 3, 2, 0, 4, 3, 9, 2, 1, 8, 0, 9, 8, 8, 5, 9, 0, 3, 0, 8, 9, 3, 8, 9, 9, 3, 6, 5, 5, 6, 4, 7, 4, 2, 0, 7, 3, 8, 1, 7, 4, 2, 8, 0, 5, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.35635348985715436242025923556814897886...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201744 *)

A201745 Decimal expansion of the number x satisfying x^2+6=e^x.

Original entry on oeis.org

2, 5, 0, 9, 3, 3, 6, 6, 6, 8, 0, 2, 5, 0, 3, 6, 3, 2, 4, 5, 4, 6, 4, 1, 0, 2, 6, 7, 8, 6, 9, 8, 5, 2, 7, 3, 8, 4, 2, 0, 3, 6, 9, 5, 7, 9, 0, 3, 4, 4, 0, 4, 1, 3, 1, 6, 9, 8, 7, 7, 3, 5, 6, 7, 0, 7, 5, 2, 2, 2, 6, 1, 2, 1, 0, 4, 6, 8, 3, 5, 9, 8, 7, 1, 6, 4, 2, 8, 2, 2, 0, 1, 6, 2, 8, 6, 7, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.50933666802503632454641026786985273842....
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 6;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.5, 2.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201745 *)
  • PARI
    solve(x=2,3, x^2+6-exp(x)) \\ Charles R Greathouse IV, Nov 26 2024

A201746 Decimal expansion of the number x satisfying x^2+7=e^x.

Original entry on oeis.org

2, 6, 3, 4, 9, 8, 9, 9, 1, 5, 7, 5, 9, 3, 4, 7, 9, 1, 8, 3, 9, 4, 7, 4, 7, 7, 4, 3, 7, 3, 8, 5, 9, 6, 5, 4, 3, 7, 3, 6, 2, 5, 4, 5, 6, 0, 2, 7, 0, 1, 4, 0, 7, 8, 9, 1, 4, 4, 9, 4, 6, 0, 8, 3, 4, 5, 9, 3, 3, 4, 7, 6, 4, 5, 6, 3, 8, 5, 6, 6, 9, 2, 3, 6, 4, 4, 5, 1, 8, 3, 4, 9, 0, 4, 9, 1, 3, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.634989915759347918394747743738596543736254...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 7;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201746 *)
    RealDigits[x/.FindRoot[x^2+7==E^x,{x,2.6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Jun 11 2025 *)

A201747 Decimal expansion of the number x satisfying x^2+8=e^x.

Original entry on oeis.org

2, 7, 4, 2, 0, 5, 7, 1, 9, 7, 2, 5, 8, 6, 5, 1, 5, 9, 5, 5, 1, 9, 1, 6, 7, 3, 7, 8, 7, 9, 0, 0, 2, 3, 5, 8, 5, 1, 6, 8, 0, 2, 5, 4, 9, 1, 4, 3, 6, 1, 4, 1, 9, 6, 5, 8, 3, 5, 0, 3, 4, 4, 2, 5, 5, 8, 2, 5, 1, 3, 3, 8, 6, 4, 2, 9, 5, 0, 1, 5, 2, 3, 3, 6, 2, 7, 0, 1, 5, 3, 4, 1, 5, 0, 7, 2, 8, 0, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.7420571972586515955191673787900235851680254...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 8;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.7, 2.8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201747 *)

A201748 Decimal expansion of the number x satisfying x^2+9=e^x.

Original entry on oeis.org

2, 8, 3, 5, 6, 0, 0, 5, 0, 6, 0, 3, 5, 9, 7, 9, 9, 6, 7, 6, 2, 5, 3, 5, 9, 1, 9, 5, 8, 7, 6, 2, 7, 1, 6, 0, 8, 5, 3, 2, 8, 0, 8, 5, 4, 2, 5, 0, 4, 3, 9, 0, 4, 1, 0, 9, 0, 6, 1, 5, 4, 4, 8, 1, 6, 2, 3, 9, 8, 9, 1, 1, 3, 9, 8, 7, 6, 5, 2, 0, 1, 1, 0, 3, 6, 0, 4, 1, 9, 6, 7, 3, 2, 8, 2, 2, 1, 6, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.8356005060359799676253591958762716085328...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 9;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.8, 2.9}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201748 *)

A201749 Decimal expansion of the number x satisfying x^2+10=e^x.

Original entry on oeis.org

2, 9, 1, 8, 8, 2, 6, 9, 8, 2, 3, 0, 6, 3, 4, 5, 3, 4, 3, 6, 5, 1, 7, 4, 6, 4, 8, 0, 5, 4, 0, 9, 7, 6, 2, 4, 9, 9, 4, 9, 0, 9, 4, 7, 6, 8, 1, 0, 7, 5, 4, 5, 8, 9, 8, 0, 6, 0, 7, 0, 7, 6, 5, 2, 1, 3, 8, 3, 0, 5, 8, 3, 0, 4, 9, 6, 7, 5, 8, 6, 5, 8, 2, 8, 3, 3, 0, 5, 7, 0, 1, 9, 6, 1, 1, 6, 3, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.918826982306345343651746480540976249949094...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 0; c = 10;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201749 *)
Previous Showing 41-50 of 64 results. Next