cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 77 results. Next

A202870 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202869; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -11, 1, 1, -46, 37, -1, 1, -162, 299, -99, 1, 1, -567, 1675, -1324, 225, -1, 1, -1872, 8316, -11315, 5292, -432, 1, 1, -5881, 40254, -79457, 60782, -16458, 760, -1, 1, -17990, 182413, -490520, 543130, -260498, 45424, -1232
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A202869 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,3},{3,10}}, with p(2)=1-11x+x^2 and zero-set {0.091..., 10.908...}.
...
The 3rd ps is {{1,3,4},{3,10,15},{4,15,26}}, with p(3)=1-46x+37x^2-x^3 and zero-set {0.022..., 1.265..., 35.712...}.
...
Top of the array:
1...-1
1...-11....1
1...-46....37....-1
1...-162...299...-99...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Floor[k*GoldenRatio];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A202870 as a sequence *)
    TableForm[Table[c[n], {n, 1, 10}]]  (* A202870 as a matrix *)

A202875 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202874; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -12, 20, -1, 1, -19, 69, -59, 1, 1, -27, 159, -303, 162, -1, 1, -36, 302, -943, 1149, -434, 1, 1, -46, 511, -2284, 4599, -3991, 1147, -1, 1, -57, 800, -4743, 13733, -19785, 13090, -3016, 1, 1, -69, 1184, -8867, 34141, -70945
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-6....1
1...-12...20...-1
1...-19...69...-59...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k + 1]
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A203004 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A203003; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -439, 1221, -839, 1, 1, -2475, 10435, -13855, 5658, -1, 1, -14312, 81690, -165715, 138669, -39038, 1, 1, -83270, 601411, -1661956, 2164099, -1292751, 266899, -1, 1, -485157
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-18....1
1...-84....116....-1
1...-439...1221...-839...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k + 1]^2;
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A203906 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203905.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -4, 4, -1, 1, -6, 11, -6, 1, 1, -8, 22, -24, 9, -1, 1, -10, 37, -62, 46, -12, 1, 1, -12, 56, -128, 148, -80, 16, -1, 1, -14, 79, -230, 367, -314, 130, -20, 1, 1, -16, 106, -376, 771, -920, 610, -200, 25, -1, 1, -18, 137
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
If we omit the main diagonal of this array and ignore the signs of the entries then the resulting array, reading the rows in reverse order, appears to equal the Riordan array (1/((1 + x)*(1 - x)^3), x/(1 - x)^2), whose generating function begins 1 + (2 + t)*x + (4 + 4*t + t^2)*x^2 + (6 + 11*t + 6*t^2 + t^3)*x^3 + (9 + 24*t + 22*t^2 + 8*t^3 + t^4)*x^4 + .... - Peter Bala, Sep 17 2019

Examples

			Top of the array:
1...-1
1...-2....1
1...-4....4...-1
1...-6...11...-6....1
1...-8...22...-24...9...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #,
    Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                         (* A203906 *)
    TableForm[Table[c[n], {n, 1, 10}]]
    Table[p[n] /. x -> -1, {n, 1, 16}] (* A166516 *)

A203946 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203945.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -5, 8, -5, 1, 1, -7, 17, -17, 7, -1, 1, -9, 30, -45, 30, -9, 1, 1, -11, 47, -98, 103, -52, 12, -1, 1, -13, 68, -183, 269, -212, 83, -15, 1, 1, -15, 93, -308, 588, -651, 399, -123, 18, -1, 1, -17, 122, -481, 1136
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
1...-1
1...-2....1
1...-3....3....-1
1...-5....8....-5....1
1...-7....17...-17...7...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #,
    Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]   (* A203946 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A203954 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203953.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -20, 12, -1, 1, -70, 75, -22, 1, 1, -264, 406, -200, 33, -1, 1, -1034, 2085, -1470, 430, -48, 1, 1, -4108, 10296, -9600, 4116, -816, 64, -1, 1, -16398, 49231, -57574, 33135, -9786, 1410, -84, 1, 1, -65552, 229482
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
1...-1
1...-6.....1
1...-20....12....-1
1...-70....75....-22....1
1...-264...406...-200...33...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 2}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] :=
      NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A203954 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A203956 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203955.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -12, 20, -1, 1, -27, 165, -35, 1, 1, -123, 1255, -511, 54, -1, 1, -300, 9266, -6003, 1197, -82, 1, 1, -558, 77523, -71564, 20779, -2463, 111, -1, 1, -2841, 688624, -817771, 315489, -54393, 4386, -144, 1, 1, -9093
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
1...-1
1...-6....1
1...-12....20....-1
1...-27....165...-35....1
1...-123...1255..-511...54...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 2, 3}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] :=
      NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A203956 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A203989 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {max(i,j)} (A051125).

Original entry on oeis.org

1, -1, -2, -3, 1, 3, 11, 6, -1, -4, -23, -35, -10, 1, 5, 39, 98, 85, 15, -1, -6, -59, -207, -308, -175, -21, 1, 7, 83, 374, 795, 798, 322, 28, -1, -8, -111, -611, -1694, -2475, -1806, -546, -36, 1, 9, 143, 930, 3185, 6149, 6633, 3696, 870, 45
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
The characteristic polynomial seems be the recurrence relation given by p(n,x) = -x * p(n-1,x) + n * (-1)^(n-1) * sum_{i=0..n-1} x^i * binomial(2n-i-2,i). - Enrique Pérez Herrero, Jan 29 2013

Examples

			Top of the array:
1... -1
-2... -3.... 1
3.... 11... 6... -1
-4... -23.. -35.. -10...1
5.... 39... 98... 85...15.. -1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[i, j];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6th principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A051125 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]              (* A203989 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A203991 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {(i+j)*min(i,j)} (A203990).

Original entry on oeis.org

2, -1, 7, -10, 1, 38, -71, 28, -1, 281, -610, 357, -60, 1, 2634, -6329, 4620, -1253, 110, -1, 29919, -77530, 65613, -23348, 3514, -182, 1, 399342, -1098271, 1036044, -442349, 90800, -8442, 280, -1, 6125265
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
2.... -1
7.... -10... 1
38... -71... 28... -1
281.. -610.. 357.. -60... 1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := (i + j) Min[i, j];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]  (* A203990 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A203991 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A203997 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1),j(i+1)} (A203996).

Original entry on oeis.org

2, -1, 3, -8, 1, 4, -19, 20, -1, 5, -34, 69, -40, 1, 6, -53, 160, -189, 70, -1, 7, -76, 305, -552, 434, -112, 1, 8, -103, 516, -1265, 1560, -882, 168, -1, 9, -134, 805, -2496, 4235, -3828, 1638, -240, 1, 10, -169, 1184, -4445, 9646
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
2...-1
3...-8.....1
4...-19....20....-1
5...-34....69....-40....1
6...-53....160...-189...70....-1
7...-76....305...-552...434...-112...1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[i (j + 1), j (i + 1)];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]   (* A203996 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]      (* A203997 *)
    TableForm[Table[c[n], {n, 1, 10}]]
Previous Showing 11-20 of 77 results. Next