cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 248 results. Next

A205006 a(n) = s(k)-s(j), where (s(k),s(j)) is the least pair of distinct triangular numbers for which n divides their difference.

Original entry on oeis.org

2, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 72, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 132, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 156, 79, 80, 81
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Cf. A318894 (gives the positions where a(n) is not n).

Programs

  • Mathematica
    (See the program at A205002.)
  • PARI
    A205006(n) = for(k=2,oo,my(sk=binomial(k+1,2)); for(j=1,k-1,if(!((sk-binomial(j+1,2))%n),return(sk-binomial(j+1,2))))); \\ Antti Karttunen, Sep 27 2018

Extensions

More terms from Antti Karttunen, Sep 27 2018

A205383 a(n) = (1/n)*A205382(n).

Original entry on oeis.org

8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

Possibly a(n) = (1/n)*lcm(8,n); see A205382.
For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205850 [s(k)-s(j)]/4, where the pairs (k,j) are given by A205847 and A205848, and s(k) denotes the (k+1)-st Fibonacci number.

Original entry on oeis.org

1, 3, 2, 5, 4, 2, 8, 13, 22, 21, 19, 17, 34, 58, 57, 55, 53, 36, 94, 93, 91, 89, 72, 36, 152, 144, 246, 233, 399, 398, 396, 394, 377, 341, 305, 644, 610, 1045, 1044, 1042, 1040, 1023, 987, 951, 646, 1691, 1690, 1688, 1686, 1669, 1633, 1597, 1292, 646
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2012

Keywords

Comments

For a guide to related sequences, see A205840.

Examples

			The first six terms match these differences:
s(4)-s(1) = 5-1 = 4 = 4*1
s(6)-s(1) = 13-1 = 12= 4*3
s(6)-s(4) = 13-5 = 8 = 4*2
s(7)-s(1) = 21-1 = 20 = 4*5
s(7)-s(4) = 21-5 = 16 = 4*4
s(7)-s(6) = 21-13 = 8 = 4*2
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]  (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 4; t = d[c]    (* A205846 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]    (* A205847 *)
    Table[j[n], {n, 1, z2}]    (* A205848 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205849 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205850 *)

A204897 a(n) = (p(n)-q(n))/n, where (p(n), q(n)) is the least pair of primes for which n divides p(n)-q(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

For a guide to related sequences, see A204892.
It seems that a(A007921(n)) = 2 for all n. - Antti Karttunen, Oct 09 2018

Examples

			(3-2)/1=1
(5-3)/2=1
(5-2)/3=1
(7-3)/4=1
(7-2)/5=1
(11-5)/6=1
(17-3)/7=2
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204892.)
  • PARI
    A204897(n) = { my(d); forprime(p=3,oo, forprime(q=2,p-1,if(!((d=(p-q))%n),return(d/n),if(dAntti Karttunen, Oct 09 2018

Extensions

More terms from Antti Karttunen, Oct 09 2018

A204914 Ordered differences of squared primes.

Original entry on oeis.org

5, 21, 16, 45, 40, 24, 117, 112, 96, 72, 165, 160, 144, 120, 48, 285, 280, 264, 240, 168, 120, 357, 352, 336, 312, 240, 192, 72, 525, 520, 504, 480, 408, 360, 240, 168, 837, 832, 816, 792, 720, 672, 552, 480, 312, 957, 952, 936, 912, 840, 792, 672
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1) = s(2) - s(1) =  9 - 4 =  5;
a(2) = s(3) - s(1) = 25 - 4 = 21;
a(3) = s(3) - s(2) = 25 - 9 = 16;
a(4) = s(4) - s(1) = 49 - 4 = 45.
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204916.)
  • Python
    from math import isqrt
    from sympy import prime, primerange
    def aupton(terms):
      sqps = [p*p for p in primerange(1, prime(isqrt(2*terms)+1)+1)]
      return [b-a for i, b in enumerate(sqps) for a in sqps[:i]][:terms]
    print(aupton(52)) # Michael S. Branicky, May 21 2021

A204925 a(n) is the index j < k such that n divides s(k) - s(j), where k is the least index (A204924) for which such j exists, and s=(1,2,3,5,8,13,...), the Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 3, 2, 1, 5, 6, 5, 4, 7, 3, 2, 1, 6, 1, 3, 10, 4, 5, 1, 4, 4, 8, 3, 2, 1, 7, 1, 10, 9, 6, 5, 11, 7, 6, 3, 1, 5, 3, 5, 10, 8, 4, 8, 3, 2, 1, 8, 5, 4, 1, 10, 16
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			(See the Example section at A204924.)
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204924.)

A204928 s(k(n)) - s(j(n)), where (s(k(n)), s(j(n))) is the least pair of distinct Fibonacci numbers for which n divides s(k(n)) - s(j(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 18, 10, 11, 12, 13, 42, 225, 16, 34, 18, 19, 20, 21, 88, 230, 144, 50, 26, 54, 84, 29, 2550, 31, 32, 33, 34, 17710, 144, 555, 76, 4173, 2440, 123, 42, 86, 88, 225, 230, 47, 144, 343, 50, 2550, 52, 53, 54, 55, 2576, 228, 232, 121304
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

The ordering of the pairs (s(k(n)), s(j(n))) is given by A204922. For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204924.)

A204929 (s(k(n)) - s(j(n)))/n, where (s(k(n)), s(j(n))) is the least pair of distinct Fibonacci numbers for which n divides s(k(n)) - s(j(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 15, 1, 2, 1, 1, 1, 1, 4, 10, 6, 2, 1, 2, 3, 1, 85, 1, 1, 1, 1, 506, 4, 15, 2, 107, 61, 3, 1, 2, 2, 5, 5, 1, 3, 7, 1, 50, 1, 1, 1, 1, 46, 4, 4, 2056, 451
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204924.)

A204935 The number j! such that n divides k!-j!>0, where k is the least positive integer for which such a j exists.

Original entry on oeis.org

1, 2, 6, 2, 1, 6, 1, 24, 6, 120, 2, 24, 24, 6, 120, 24, 1, 6, 6, 120, 6, 2, 1, 24, 120, 24, 720, 5040, 24, 120, 2, 24, 24, 6, 5040, 720, 720, 6, 24, 120, 120, 6, 40320, 24, 720, 24, 24, 24, 5040, 120, 6, 24, 2, 720, 720, 5040, 6, 24, 2, 120, 40320, 2, 5040
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,k,V;
      t:= 1:
      for k from 1 do
        t:= t*k mod n;
        if assigned(V[t]) then return V[t]! else V[t]:= k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 10 2024
  • Mathematica
    (See the program at A204932.)

A204988 The index j < k such that n divides 2^k - 2^j, where k is the least index (A204987) for which such j exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			(See example at A204987.)
		

Crossrefs

Programs

Formula

a(n) = A007814(n) + (1-(-1)^n)/2 (conjecture). - Velin Yanev, Nov 14 2016.
From Andrew Howroyd, Aug 08 2018: (Start)
The above conjecture is true because the definition of this sequence and A204987 requires j to be at least 1 and 2^k - 2^j can be written 2^j*(2^(k-j) - 1).
a(n) = max(1, A007814(n)). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Oct 22 2022

Extensions

More terms from Antti Karttunen, Nov 19 2017
Keyword:mult added by Andrew Howroyd, Aug 08 2018
Previous Showing 51-60 of 248 results. Next