A359410
Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 6 elements.
Original entry on oeis.org
30, 60, 90, 120, 180, 240, 270, 300, 330, 360, 390, 450, 480, 510, 540, 570, 600, 660, 690, 720, 750, 780, 810, 870, 900, 930, 960, 990, 1020, 1080, 1110, 1140, 1170, 1200, 1230, 1290, 1320, 1350, 1380, 1410, 1440, 1500, 1530, 1560, 1590, 1620, 1650, 1710, 1740
Offset: 1
d = 30 is a term because the longest possible APs of primes with common difference d = 30 all have 6 elements; the first such APs start with 7, 107, 359, .... The smallest one is (7, 37, 67, 97, 127, 157); then 187 = 11*17.
d = 60 is another term because the longest possible APs of primes with common difference d = 60 all have 6 elements; the first such APs start with 11, 53, 641, .... The smallest one is (11, 71, 131, 191, 251, 311); then 371 = 7*53.
d = 150 is not a term because the longest possible AP of primes with common difference d = 150 is (7, 157, 307, 457, 607, 757, 907) which has 7 elements; this last one is unique.
-
filter := d -> (irem(d, 30) = 0) and (irem(d, 7) <> 0) and not (isprime(7+d) and isprime(7+2*d) and isprime(7+3*d) and isprime(7+4*d) and isprime(7+5*d) and isprime(7+6*d)): select(filter, [$(1 .. 1740)]);
A206040
Values of the difference d for 6 primes in arithmetic progression with the minimal start sequence {7 + j*d}, j = 0 to 5.
Original entry on oeis.org
30, 150, 930, 2760, 3450, 4980, 9150, 14190, 19380, 20040, 21240, 28080, 33930, 57660, 59070, 63600, 69120, 76710, 80340, 81450, 97380, 100920, 105960, 114750, 117420, 122340, 134250, 138540, 143670, 150090, 164580, 184470, 184620, 189690, 231360, 237060
Offset: 1
d = 150 then {7, 7 + 1*150, 7 + 2*150, 7 + 3*150, 7 + 4*150, 7 + 5*150} = {7, 157, 307, 457, 607, 757} which is 6 primes in arithmetic progression.
-
a = 7; t = {}; Do[If[PrimeQ[{a, a + d, a + 2*d, a + 3*d, a + 4*d, a + 5*d}] == {True, True, True, True, True, True}, AppendTo[t,d]], {d, 300000}]; t
Select[Range[250000],AllTrue[7+#*Range[0,5],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 26 2017 *)
A360146
Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 10 elements.
Original entry on oeis.org
210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2520, 2730, 2940, 3150, 3360, 3570, 3780, 3990, 4200, 4410, 4830, 5040, 5250, 5460, 5670, 5880, 6090, 6300, 6510, 6720, 7140, 7350, 7560, 7770, 7980, 8190, 8400, 8610, 8820, 9030, 9450, 9660, 9870, 10080, 10290, 10500, 10710, 10920
Offset: 1
d = 210 is a term because the longest possible APs of primes with common difference d = 210 all have 10 elements. The first such AP is (199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089), then 2299 = 11*209.
d = 420 is another term because the longest possible APs of primes with common difference d = 420 all have 10 elements; the first such APs start with 52879, 3544939, ... The smallest one is (52879, 53299, 53719, 54139, 54559, 54979, 55399, 55819, 56239, 56659), then 57079 = 11*5189.
-
A053669(n) = forprime(p=2, , if(n%p, return(p)));
f(n) = my(p=A053669(n)); for (i=1, p-1, if (!isprime(p+i*n), return(p-1))); p; \\ A123556
isok(n) = f(n) == 10; \\ Michel Marcus, Mar 10 2023
A235393
Integers k such that 11 + 210*k*i is prime for i = 0..7.
Original entry on oeis.org
5763, 12018, 22801, 50132, 61637, 94360, 109218, 134995, 136610, 155577, 206873, 225384, 246512, 257764, 284794, 288691, 303437, 317914, 370530, 385202, 418722, 431434, 490450, 515765, 548617, 560188, 597275, 693940, 704899, 768433, 786934, 819640, 840480
Offset: 1
-
is_A235393(k)=!for(i=1,7,ispseudoprime(11+210*k*i)||return)
-
for(k=1,1e6,is_A235393(k) && print1(k",")) \\ (End)
A383134
Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).
Original entry on oeis.org
2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The array begins as:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 2, 1, 1, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 3, 4, 2, 3, 1, 2, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 1, 1, 2, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
...
A(2,2) = 3 since 3 primes are in arithmetic progression with a difference of 2 and the first term equal to the 2nd prime: 3, 5, and 7.
A(6,3) = 5 since 5 primes are in arithmetic progression with a difference of 6 and the first term equal to the 3rd prime: 5, 11, 17, 23, and 29.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.
-
A[n_,k_]:=Module[{count=1,sum=Prime[k]},While[PrimeQ[sum+=n], count++]; count]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten
Comments