A208660
Triangle of coefficients of polynomials u(n,x) jointly generated with A208904; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 8, 2, 1, 18, 14, 2, 1, 32, 52, 20, 2, 1, 50, 140, 104, 26, 2, 1, 72, 310, 380, 174, 32, 2, 1, 98, 602, 1106, 806, 262, 38, 2, 1, 128, 1064, 2744, 2924, 1472, 368, 44, 2, 1, 162, 1752, 6048, 8892, 6412, 2432, 492, 50, 2, 1, 200, 2730, 12168, 23652
Offset: 1
First five rows:
1
1...2
1...8....2
1...18...14...2
1...32...52...20...2
First five polynomials u(n,x):
1
1 + 2x
1 + 8x + 2x^2
1 + 18x + 14x^2 + 2x^3
1 + 32x + 52x^2 + 20x^3 + 2x^4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208660 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208904 *)
A208749
Triangle of coefficients of polynomials u(n,x) jointly generated with A208750; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 6, 2, 1, 12, 10, 4, 1, 20, 32, 24, 4, 1, 30, 80, 88, 36, 8, 1, 42, 170, 256, 180, 72, 8, 1, 56, 322, 644, 660, 384, 104, 16, 1, 72, 560, 1456, 1992, 1568, 704, 192, 16, 1, 90, 912, 3024, 5256, 5360, 3392, 1344, 272, 32, 1, 110, 1410, 5856, 12552
Offset: 1
First five rows:
1;
1, 2;
1, 6, 2;
1, 12, 10, 4;
1, 20, 32, 24, 4;
First five polynomials u(n,x):
1
1 + 2x
1 + 6x + 2x^2
1 + 12x + 10x^2 + 4x^3
1 + 20x + 32x^2 + 24x^3 + 4x^4
From _Philippe Deléham_, Mar 14 2012: (Start)
(1, 0, 1, 0, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 6, 2, 0;
1, 12, 10, 4, 0;
1, 20, 32, 24, 4, 0;
1, 30, 80, 88, 36, 8, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208749 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208750 *)
A208750
Triangle of coefficients of polynomials v(n,x) jointly generated with A208749; see the Formula section.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 4, 11, 10, 2, 5, 24, 32, 16, 4, 6, 45, 84, 72, 32, 4, 7, 76, 194, 240, 156, 48, 8, 8, 119, 406, 666, 592, 300, 88, 8, 9, 176, 784, 1632, 1896, 1344, 576, 128, 16, 10, 249, 1416, 3648, 5344, 4904, 2848, 1024, 224, 16, 11, 340, 2418, 7584
Offset: 1
First five rows:
1;
2, 1;
3, 4, 2;
4, 11, 10, 2;
5, 24, 32, 16, 4;
First five polynomials v(n,x):
1
2 + x
3 + 4x + 2x^2
4 + 11x + 10x^2 + 2x^3
5 + 24x + 32x^2 + 16x^3 + 4x^4
From _Philippe Deléham_, Mar 16 2012: (Start)
(1, 1, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -2, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 4, 2, 0;
4, 11, 10, 2, 0;
5, 24, 32, 16, 4, 0;
6, 45, 84, 72, 32, 4, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208749 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208750 *)
A208751
Triangle of coefficients of polynomials u(n,x) jointly generated with A208752; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 40, 18, 2, 1, 30, 100, 86, 24, 2, 1, 42, 210, 294, 150, 30, 2, 1, 56, 392, 812, 656, 232, 36, 2, 1, 72, 672, 1932, 2268, 1240, 332, 42, 2, 1, 90, 1080, 4116, 6624, 5172, 2100, 450, 48, 2, 1, 110, 1650, 8052, 17028, 17996
Offset: 1
First five rows:
1;
1, 2;
1, 6, 2;
1, 12, 12, 2;
1, 20, 40, 18, 2;
First five polynomials u(n,x):
1
1 + 2x
1 + 6x + 2x^2
1 + 12x + 12x^2 + 2x^3
1 + 20x + 40x^2 + 18x^3 + 2x^4
From _Philippe Deléham_, Mar 17 2012: (Start)
(1, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 6, 2, 0;
1, 12, 12, 2, 0;
1, 20, 40, 18, 2, 0;
1, 30, 100, 86, 24, 2, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208751 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208752 *)
A208752
Triangle of coefficients of polynomials v(n,x) jointly generated with A208751; see the Formula section.
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 14, 8, 1, 5, 30, 34, 11, 1, 6, 55, 104, 63, 14, 1, 7, 91, 259, 253, 101, 17, 1, 8, 140, 560, 806, 504, 148, 20, 1, 9, 204, 1092, 2178, 1966, 884, 204, 23, 1, 10, 285, 1968, 5202, 6412, 4090, 1420, 269, 26, 1, 11, 385, 3333, 11286, 18238
Offset: 1
First five rows:
1
2 1
3 5 1
4 14 8 1
5 30 34 11 1
First five polynomials u(n,x) - see A208751:
1
1 + 2*x
1 + 6*x + 2*x^2
1 + 12*x + 12*x^2 + 2*x^3
1 + 20*x + 40*x^2 + 18*x^3 + 2*x^4
(0, 2, -1/2, 1/2, 0, 0, ...) DELTA (1, 0, 1/2, -1/2, 0, 0, ...) begins:
1
0, 1
0, 2, 1
0, 3, 5, 1
0, 4, 14, 8, 1
0, 5, 30, 34, 11, 1. - _Philippe Deléham_, Mar 17 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208751 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208752 *)
A208753
Triangle of coefficients of polynomials u(n,x) jointly generated with A208754; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 8, 1, 18, 4, 1, 32, 24, 1, 50, 80, 8, 1, 72, 200, 64, 1, 98, 420, 280, 16, 1, 128, 784, 896, 160, 1, 162, 1344, 2352, 864, 32, 1, 200, 2160, 5376, 3360, 384, 1, 242, 3300, 11088, 10560, 2464, 64, 1, 288, 4840, 21120, 28512, 11264, 896, 1
Offset: 1
First five rows:
1
1...2
1...8
1...18...4
1...32...24
First five polynomials u(n,x):
1
1 + 2x
1 + 8x
1 + 18x + 4x^2
1 + 32x + 24x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208754 *)
A208754
Triangle of coefficients of polynomials v(n,x) jointly generated with A208753; see the Formula section.
Original entry on oeis.org
1, 3, 5, 2, 7, 10, 9, 28, 4, 11, 60, 28, 13, 110, 108, 8, 15, 182, 308, 72, 17, 280, 728, 352, 16, 19, 408, 1512, 1248, 176, 21, 570, 2856, 3600, 1040, 32, 23, 770, 5016, 8976, 4400, 416, 25, 1012, 8316, 20064, 14960, 2880, 64, 27, 1300, 13156, 41184
Offset: 1
First five rows:
1
3
5...2
7...10
9...28...4
First five polynomials v(n,x):
1
3
5 + 2x
7 + 10x
9 + 28x + 4x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208754 *)
A208758
Triangle of coefficients of polynomials v(n,x) jointly generated with A208757; see the Formula section.
Original entry on oeis.org
1, 0, 3, 0, 1, 8, 0, 1, 4, 22, 0, 1, 4, 16, 60, 0, 1, 4, 18, 56, 164, 0, 1, 4, 20, 68, 188, 448, 0, 1, 4, 22, 80, 248, 608, 1224, 0, 1, 4, 24, 92, 312, 864, 1920, 3344, 0, 1, 4, 26, 104, 380, 1152, 2928, 5952, 9136, 0, 1, 4, 28, 116, 452, 1472, 4128, 9696, 18192
Offset: 1
First five rows:
1;
0, 3;
0, 1, 8;
0, 1, 4, 22;
0, 1, 4, 16, 60;
First five polynomials v(n,x):
1
3x
x + 8x^2
x + 4x^2 + 22x^3
x + 4x^2 + 16x^3 + 60^x4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208757 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208758 *)
A208759
Triangle of coefficients of polynomials u(n,x) jointly generated with A208760; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 16, 16, 1, 8, 30, 56, 44, 1, 10, 48, 128, 188, 120, 1, 12, 70, 240, 504, 608, 328, 1, 14, 96, 400, 1080, 1872, 1920, 896, 1, 16, 126, 616, 2020, 4512, 6672, 5952, 2448, 1, 18, 160, 896, 3444, 9352, 17856, 23040, 18192, 6688, 1, 20, 198, 1248, 5488, 17472, 40600, 67776, 77616, 54976, 18272
Offset: 1
First five rows:
1;
1, 2;
1, 4, 6;
1, 6, 16, 16;
1, 8, 30, 56, 44;
First five polynomials u(n,x):
1
1 + 2x
1 + 4x + 6x^2
1 + 6x + 16x^2 + 16x^3
1 + 8x + 30x^2 + 56x^3 + 44x^4
From _Philippe Deléham_, Mar 18 2012: (Start)
(1, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 6, 0;
1, 6, 16, 16, 0;
1, 8, 30, 56, 44, 0;
1, 10, 48, 128, 188, 120, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208759 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208760 *)
Rest[CoefficientList[CoefficientList[Series[(1-2*y*x-2*y^2*x^2)/(1-x-2*y*x- 2*y^2*x^2), {x,0,20}, {y,0,20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)
A208760
Triangle of coefficients of polynomials v(n,x) jointly generated with A208759; see the Formula section.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 7, 20, 22, 1, 9, 36, 72, 60, 1, 11, 56, 158, 244, 164, 1, 13, 80, 288, 632, 796, 448, 1, 15, 108, 470, 1320, 2376, 2528, 1224, 1, 17, 140, 712, 2420, 5592, 8544, 7872, 3344, 1, 19, 176, 1022, 4060, 11372, 22368, 29712, 24144, 9136
Offset: 1
First five rows:
1;
1, 3;
1, 5, 8;
1, 7, 20, 22;
1, 9, 36, 72, 60;
First five polynomials v(n,x):
1
1 + 3x
1 + 5x + 8x^2
1 + 7x + 20x^2 + 22x^3
1 + 9x + 36x^2 + 72x^3 + 60x^4
From _Philippe Deléham_, Mar 18 2012: (Start)
(1, 0, -1/3, 1/3, 0, 0, ...) DELTA (0, 3, -1/3, -2/3, 0, 0, ...) begins:
1;
1, 0;
1, 3, 0;
1, 5, 8, 0;
1, 7, 20, 22, 0;
1, 9, 36, 72, 60, 0;
1, 11, 56, 158, 244, 164, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208759 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208760 *)
Comments