cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A237430 Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with two-fold rotational symmetry (and no other symmetry).

Original entry on oeis.org

0, 0, 5, 366, 129871, 174041330, 1343294003351, 41725919954578785, 7159149948562719664049, 5065741493544986113047994120
Offset: 1

Views

Author

Ed Wynn, Feb 07 2014

Keywords

Examples

			An example of each isomorphism class for n=3.
  o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o o-o   o-o-o-o o-o
  |         |   |         |   |         |   |     | | |   |     | | |
  o-o-o-o o-o   o o-o-o-o-o   o o-o o-o-o   o-o o-o o o   o o-o o-o o
        | |     | |           | | | |         | |   | |   | | |     |
  o-o-o-o o-o   o o-o-o-o-o   o o o o o-o   o-o o-o-o o   o-o o o-o-o
  |         |   |         |   | | | | | |   |         |       | |
  o-o o-o-o-o   o-o-o-o-o o   o-o o o o o   o o-o-o o-o   o-o-o o o-o
    | |                 | |       | | | |   | |   | |     |     | | |
  o-o o-o-o-o   o-o-o-o-o o   o-o-o o-o o   o o o-o o-o   o o-o o-o o
  |         |   |         |   |         |   | | |     |   | | |     |
  o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o-o-o   o-o o-o-o-o   o-o o-o-o-o
		

Crossrefs

Formula

a(n) = A227257(n) - A237429(n).

A237431 Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with exactly two axes of reflective symmetry.

Original entry on oeis.org

0, 1, 3, 20, 244, 6891, 378813, 47917598, 12118420172, 6998287399637
Offset: 1

Views

Author

Ed Wynn, Feb 07 2014

Keywords

Examples

			Examples of 2 of the 3 classes for n=3. Note that all examples also have two-fold (but not four-fold) rotational symmetry.
  o-o-o-o-o-o   o-o-o-o-o-o
  |         |   |         |
  o-o-o o-o-o   o o-o o-o o
      | |       | | | | | |
  o-o-o o-o-o   o-o o o o-o
  |         |       | |
  o-o-o o-o-o   o-o o o o-o
      | |       | | | | | |
  o-o-o o-o-o   o o-o o-o o
  |         |   |         |
  o-o-o-o-o-o   o-o-o-o-o-o
		

Crossrefs

A237432 Number of nonisomorphic Hamiltonian cycles on (4n-2) X (4n-2) square grid of points with four-fold rotational symmetry (and no other symmetry).

Original entry on oeis.org

0, 1, 102, 255359, 15504309761, 21955745395591600, 712319733455900182066337, 524246290066954425217045809870657
Offset: 1

Views

Author

Ed Wynn, Feb 07 2014

Keywords

Comments

For square grids of m X m points, there are solutions only for m = (4n-2).

Examples

			The two cycles counted as a single class for n=2. These are isomorphic (here meaning isomorphic under the full symmetry group of the square), since each is a reflection of the other.
  o-o o-o-o-o  o-o-o-o o-o
  | | |     |  |     | | |
  o o o o-o-o  o-o-o o o o
  | | | |          | | | |
  o o-o o-o-o  o-o-o o-o o
  |         |  |         |
  o-o-o o-o o  o o-o o-o-o
      | | | |  | | | |
  o-o-o o o o  o o o o-o-o
  |     | | |  | | |     |
  o-o-o-o o-o  o-o o-o-o-o
		

Crossrefs

Formula

a(n) = A238819(n-1) / 2 for n > 1. - Andrew Howroyd, Apr 06 2016

Extensions

a(6)-a(8) from Andrew Howroyd, Apr 06 2016

A384173 Number of Hamiltonian paths from NW to SW corners in an n X n grid reduced for symmetry, i.e., where reflection about the x-axis is not counted as distinct.

Original entry on oeis.org

1, 1, 1, 5, 43, 897, 44209, 4467927, 1043906917, 506673590576, 555799435739334, 1284472450789974196, 6625529679919810063544, 72597408139909172033687226, 1762085630816152820582838187465, 91326629994353561722347679614188407
Offset: 1

Views

Author

Oliver R. Bellwood, May 21 2025

Keywords

Comments

When n is odd there are no symmetric Hamiltonian paths from NW to SW corners, and therefore a(n) = A000532(n)/2.

Examples

			The two paths of A000532(3) = 2 are equivalent under reflection about the x-axis:
  + - + - +
          |
  + - +   +
  |   |   |
  +   + - +
  +   + - +
  |   |   |
  + - +   +
          |
  + - + - +
		

References

  • J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
  • J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.

Crossrefs

Formula

a(n) = A000532(n)/2 for odd n.

A358212 a(n) is the maximal possible sum of squares of the side lengths of an n^2-gon supported on a subset 1 <= x,y <= n of an integer lattice.

Original entry on oeis.org

4, 10, 36, 98, 232
Offset: 2

Views

Author

Giedrius Alkauskas, Nov 04 2022

Keywords

Comments

Examples show that a(7) >= 462, a(8) >= 842, a(9) >= 1424, a(10) >= 2242.
Asymptotics: liminf a(n)/n^4 >= 8/27, limsup a(n)/n^4 <= 2/3.

Crossrefs

Extensions

a(5) from Giedrius Alkauskas, Oct 09 2023
a(6) from Giedrius Alkauskas, Nov 30 2023
Previous Showing 11-15 of 15 results.