cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A209926 Concatenation of the months' names, spelled in French, with 'a'=1, ..., 'z'=26 (ignoring accents).

Original entry on oeis.org

10, 1, 14, 22, 9, 5, 18, 6, 5, 22, 18, 9, 5, 18, 13, 1, 18, 19, 1, 22, 18, 9, 12, 13, 1, 9, 10, 21, 9, 14, 10, 21, 9, 12, 12, 5, 20, 1, 15, 21, 20, 19, 5, 16, 20, 5, 13, 2, 18, 5, 15, 3, 20, 15, 2, 18, 5, 14, 15, 22, 5, 13, 2, 18, 5, 4, 5, 3, 5, 13, 2, 18, 5
Offset: 1

Views

Author

M. F. Hasler, Mar 15 2012

Keywords

Crossrefs

Cf. A209924 (same for English), A209927 (same for German).

Programs

  • PARI
    Vec( Vecsmall( "janvierfevriermarsavrilmaijuinjuilletaoutseptembreoctobrenovembredecembre" ))%32

A365750 Decimal expansion of the largest root of the polynomial x^3 - x^2 - 3*x + 1.

Original entry on oeis.org

2, 1, 7, 0, 0, 8, 6, 4, 8, 6, 6, 2, 6, 0, 3, 3, 7, 2, 2, 7, 0, 3, 2, 5, 5, 7, 6, 4, 4, 2, 5, 3, 7, 0, 9, 2, 5, 4, 2, 0, 1, 3, 9, 6, 2, 9, 8, 2, 3, 3, 0, 9, 9, 5, 3, 6, 6, 8, 7, 2, 7, 4, 0, 6, 3, 8, 6, 8, 4, 5, 0, 5, 0, 1, 7, 0, 7, 4, 7, 3, 8, 9, 6, 7, 5, 6, 5, 4
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

It is the spectral radius of the paw graph.

Examples

			2.1700864866260337227032557644253...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/3+2/3Sqrt[10]Cos[1/3ArcCos[10^(-3/2)]],10,88]]

Formula

Equals 1/3 + (2/3)*sqrt(10)*cos((1/3)*arccos(10^(-3/2))).

A365814 Decimal expansion of the largest root of the polynomial x^3 - 2*x^2 - 2*x + 2.

Original entry on oeis.org

2, 4, 8, 1, 1, 9, 4, 3, 0, 4, 0, 9, 2, 0, 1, 5, 6, 2, 2, 6, 3, 3, 5, 3, 7, 2, 4, 1, 2, 1, 6, 8, 5, 7, 1, 8, 0, 5, 5, 2, 7, 4, 5, 2, 1, 6, 9, 9, 8, 4, 7, 6, 7, 2, 8, 3, 9, 5, 8, 9, 3, 1, 4, 0, 8, 1, 3, 8, 3, 6, 9, 2, 2, 3, 8, 6, 7, 6, 5, 0, 5, 3, 0, 1, 3, 2, 9, 1
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

It is the spectral radius of the house graph.

Examples

			2.4811943040920156226335372412168571805527452...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    fsolve(x^3-2*x^2-2*x+2)[3];  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    First[RealDigits[Root[#^3-2#^2-2#+2,3,0],10,88]]

Formula

Equals (2 + 10/(3*i*sqrt(111) - 1)^(1/3) + (3*i*sqrt(111) - 1)^(1/3))/3, where i denotes the imaginary unit.

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025
Previous Showing 11-14 of 14 results.