cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A284289 Number of partitions of n into prime power divisors of n (not including 1).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 7, 1, 2, 2, 10, 1, 7, 1, 10, 2, 2, 1, 34, 2, 2, 5, 13, 1, 21, 1, 36, 2, 2, 2, 72, 1, 2, 2, 73, 1, 28, 1, 19, 13, 2, 1, 249, 2, 10, 2, 22, 1, 50, 2, 127, 2, 2, 1, 419, 1, 2, 17, 202, 2, 42, 1, 28, 2, 43, 1, 1260, 1, 2, 13, 31, 2, 49, 1, 801, 23, 2, 1, 774, 2, 2, 2, 280, 1, 608
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2017

Keywords

Examples

			a(8) = 4 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2] and [2, 2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local b, l; l, b:= sort(
          [select(x-> nops(ifactors(x)[2])=1, divisors(n))[]]),
          proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
            b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
          end; b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 30 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[PrimePowerQ[d[[k]]]] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 90}] (* or *)
    a[0]=1; a[1]=0; a[n_] := Length@IntegerPartitions[n, All, Join @@ (#[[1]]^Range[#[[2]]] & /@ FactorInteger[n])]; a /@ Range[0, 90] (* Giovanni Resta, Mar 25 2017 *)

Formula

a(n) = [x^n] Product_{p^k|n, p prime, k >= 1} 1/(1 - x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.

A327642 Number of partitions of n into divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 4, 1, 5, 4, 6, 1, 19, 1, 8, 6, 25, 1, 37, 1, 36, 8, 12, 1, 169, 6, 14, 10, 64, 1, 247, 1, 81, 12, 18, 8, 1072, 1, 20, 14, 405, 1, 512, 1, 144, 82, 24, 1, 2825, 8, 146, 18, 196, 1, 1000, 12, 743, 20, 30, 1, 19858, 1, 32, 112, 969, 14, 1728, 1, 324, 24, 1105
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2019

Keywords

Comments

a(n) > n if n is in A058080 Union {0}, and, a(n) <= n if n is in A007964; indeed, a(n) = n only for n = 1. - Bernard Schott, Sep 22 2019

Examples

			The divisors of 6 are 1, 2, 3, 6 and sqrt(6) = 2.449..., so the possible partitions are 1+1+1+1+1+1 = 1+1+1+1+2 = 1+1+2+2 = 2+2+2; thus a(6) = 4. - _Bernard Schott_, Sep 22 2019
		

Crossrefs

Programs

  • Magma
    [1] cat [#RestrictedPartitions(n,{d:d in Divisors(n)| d le Sqrt(n)}):n in [1..70]]; // Marius A. Burtea, Sep 20 2019
  • Maple
    f:= proc(n) local x, t, S;
        S:= 1;
        for t in numtheory:-divisors(n) do
          if t^2 <= n then
            S:= series(S/(1-x^t),x,n+1);
          fi
        od;
        coeff(S,x,n);
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 22 2019
  • Mathematica
    a[n_] := SeriesCoefficient[Product[1/(1 - Boole[d <= Sqrt[n]] x^d), {d, Divisors[n]}], {x, 0, n}]; Table[a[n], {n, 0, 70}]

Formula

a(n) = [x^n] Product_{d|n, d <= sqrt(n)} 1 / (1 - x^d).
a(p) = 1, where p is prime.
a(p*q) = q+1 if p <= q are primes. - Robert Israel, Sep 22 2019

A263432 Number of partitions of n into divisors of n with at most one 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 17, 1, 4, 4, 10, 1, 24, 1, 24, 4, 4, 1, 126, 2, 4, 5, 30, 1, 171, 1, 36, 4, 4, 4, 490, 1, 4, 4, 251, 1, 290, 1, 43, 42, 4, 1, 1822, 2, 50, 4, 50, 1, 462, 4, 421, 4, 4, 1, 13284, 1, 4, 49, 202, 4, 616, 1, 63, 4, 581
Offset: 1

Views

Author

Geoffrey Critzer, Oct 18 2015

Keywords

Comments

a(n) is also the number of ways to partition a group of order n into its center and its nontrivial conjugacy classes. That is, the number of possible sums in the class equation.

Examples

			a(15) = 4 because we have: [15], [5,5,5], [5,3,3,3,1], [3,3,3,3,3].
		

References

  • D. S. Dummit and R. M. Foote, Abstract Algebra, Wiley, 3rd edition 2003, page 124.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1,
               `if`(m=1, 1, 0), b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 18 2015
  • Mathematica
    Table[d = Drop[Divisors[n], 1];Coefficient[Series[(1 + x)/Product[1 - x^d[[i]], {i, Length[d]}], {x, 0, n}], x,n], {n, 70}]

Formula

a(n) is the coefficient of x^n in the expansion of (1 + x)/Product_{d>1,d divides n} (1 - x^d).
Previous Showing 11-13 of 13 results.