cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A241480 Numbers k such that the GCD of the x's that satisfy sigma(x) = sigma(k) is not equal to 1.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 12, 13, 18, 19, 22, 27, 29, 32, 36, 37, 43, 45, 48, 49, 50, 61, 64, 67, 68, 72, 73, 75, 80, 81, 82, 91, 98, 100, 101, 104, 106, 109, 116, 121, 122, 128, 129, 133, 134, 137, 144, 146, 148, 149, 152, 156, 157, 160, 162, 163, 169, 171, 173
Offset: 1

Views

Author

Michel Marcus, Apr 23 2014

Keywords

Comments

Apart from 1, all terms of A211656 belong here since the solutions to sigma(x)=sigma(n) form a singleton and thus their GCD is n itself.

Crossrefs

Programs

  • PARI
    sigv(n) =  select(i->sigma(i) == n, vector(n, i, i));
    isok(n) = (gcd(sigv(sigma(n))) != 1);
    
  • PARI
    is(k) = gcd(invsigma(sigma(k))) > 1; \\ Amiram Eldar, Dec 19 2024, using Max Alekseyev's invphi.gp

Formula

Numbers k such that A241479(k) is not equal to 1.

A211678 Twin primes p, p+2 with unique values of sigma(p) and sigma(p+2); sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

3, 5, 7, 197, 199, 281, 283, 347, 349, 461, 463, 641, 643, 821, 823, 857, 859, 1289, 1291, 1697, 1699, 1721, 1723, 1787, 1789, 1877, 1879, 2081, 2083, 2141, 2143, 2381, 2383, 2549, 2551, 2801, 2803, 3257, 3259, 3539, 3541, 3557, 3559, 3929, 3931, 4019, 4021
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Examples

			Twin primes 197 and 199 are in sequence because sigma(197) = 198, sigma(199) = 200 and there are no other numbers m, n with sigma(m) = 198 or sigma(n) = 200.
		

Crossrefs

Subsequence of A211656 and A211660.
Cf. A211767 (lesser of twin primes p, p+2 with unique values of sigma(p) and sigma(p+2)), A211769 (greater of twin primes p, p+2 with unique values of sigma(p) and sigma(p+2)).
Cf. A000203.

Programs

  • Mathematica
    d = DivisorSigma[1, Range[4100]]; t = Transpose[Select[Tally[Sort[d]], #[[2]] == 1 && #[[1]] <= Length[d] &]][[1]]; t2 = Sort[Flatten[Table[Position[d, i], {i, t}]]]; t3 = Select[t2, PrimeQ]; tp = {}; Do[If[t3[[i + 1]] - t3[[i]] == 2 && DivisorSigma[1, t3[[i]]] != DivisorSigma[1, t3[[i + 1]]], AppendTo[tp, t3[[i]]]; AppendTo[tp, t3[[i]] + 2]], {i, Length[t3] - 1}]; Union[tp] (* T. D. Noe, Apr 26 2012 *)
  • PARI
    is(k) = isprime(k) && invsigmaNum(sigma(k)) == 1 && ((isprime(k+2) && invsigmaNum(sigma(k+2)) == 1) || (isprime(k-2) && invsigmaNum(sigma(k-2)) == 1)); \\ Amiram Eldar, Aug 08 2024, using Max Alekseyev's invphi.gp

A241481 Numbers such that the GCD of the x's that satisfy sigma(x) = sigma(n) is not equal to 1 while the number of such x's is not 1 either.

Original entry on oeis.org

48, 68, 75, 80, 82, 104, 116, 122, 144, 156, 160, 189, 196, 212, 225, 237, 242, 273, 279, 291, 309, 328, 342, 356, 364, 403, 490, 513, 524, 531, 592, 597, 614, 640, 651, 679, 684, 688, 712, 784, 788, 804, 808, 810, 822, 833, 889, 898, 903, 922, 925, 927, 954
Offset: 1

Views

Author

Michel Marcus, Apr 23 2014

Keywords

Comments

Subsequence of A241480, restricted to those terms that do not belong to A211656.
Is it possible, for each term of A211656, to find a corresponding term in the present sequence such that the corresponding GCD is equal to the initial A211656 term?
The first 11 terms of A211656 are: 2, 3, 4, 5, 7, 8, 9, 12, 13, 18, 19.
For these, we have 68, 48, 104, 12735, 364, 7848, 144, 9984, 273, 1764, 1197 in the present sequence.
For instance for m = 9984, the x's are [9984, 12252], with gcd = 12.
Is it possible to find a term here with corresponding gcd = 22, the 12th term of A211656?

Examples

			48 is in the sequence because sigma(48)=124 and the x's such that sigma(x) = 124 are 48 and 75, with gcd(48, 75) not equal to 1.
		

Crossrefs

Programs

  • Maple
    M:=1000: # to get all terms <= M
    N:= 0:
    for n from 1 to M do
      v:= numtheory:-sigma(n);
      N:= max(N,v);
      if assigned(R[v]) then R[v]:= igcd(R[v],n); S[v]:= S[v] union {n}
      else R[v]:= n; S[v]:= {n}
      fi;
    od:
    for n from M+1 to N do
      v:= numtheory:-sigma(n);
      if assigned(R[v]) then R[v]:= igcd(R[v],n);  S[v]:= S[v] union {n} fi;
    od:
    A:=
    `union`(seq(S[v], v = select(t -> R[t]>1 and nops(S[t])>1, map(op,[indices(R)])))) intersect {$1..M}:
    sort(convert(A,list)); # Robert Israel, Oct 24 2019
  • PARI
    sigv(n) =  select(i->sigma(i) == n, vector(n, i, i));
    isok(n) = my(v = sigv(sigma(n))); ((gcd(v)!=1) && (#v != 1));
    
  • PARI
    isok(k) = my(v = invsigma(sigma(k))); #v > 1 && gcd(v) > 1; \\ Amiram Eldar, May 28 2025, using Max Alekseyev's invphi.gp (see links).

A325652 a(n) = the sum of numbers k such that sigma(k) = sigma(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 17, 7, 8, 9, 27, 17, 12, 13, 52, 52, 41, 27, 18, 19, 87, 52, 22, 52, 121, 41, 87, 27, 67, 29, 253, 52, 32, 115, 87, 115, 36, 37, 121, 67, 187, 87, 250, 43, 192, 45, 253, 115, 123, 49, 50, 253, 149, 87, 292, 253, 292, 136, 187, 121, 663, 61, 250
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Comments

a(n)=n if n is in A211656, otherwise a(n) > n. - Robert Israel, Jul 04 2019

Examples

			a(6) = 17 because sigma(6) = sigma(11) = 12; 6 + 11 = 17.
		

Crossrefs

See A070242 and A325653 for number and product of such numbers k.

Programs

  • Magma
    [&+[k: k in[1..10000] | SumOfDivisors(k) eq SumOfDivisors(n)]: n in [1..100]];
    
  • Maple
    N:= 1000: # to get a(n) before the first n with sigma(n) > N
    S:= map(numtheory:-sigma, [$1..N-1]):
    m:=min(select(t -> S[t]>N, [$1..N-1]))-1:
    1,seq(convert(select(s -> S[s]=S[n], [$1..S[n]-1]), `+`), n=2..m); # Robert Israel, Jul 04 2019
  • Mathematica
    a[n_] := Block[{s = DivisorSigma[1, n]}, Sum[Boole[s == DivisorSigma[1, k]] k, {k, s}]]; Array[a, 62] (* Giovanni Resta, Jul 03 2019 *)
  • PARI
    a(n) = {my(s=sigma(n)); sum(k=1, s, (sigma(k)==s)*k);} \\ Michel Marcus, May 12 2019

A380303 Numbers m such that GCD of the solutions x to sigma(x) = sigma(m) are setwise coprime.

Original entry on oeis.org

1, 6, 10, 11, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 28, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 44, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 69, 70, 71, 74, 76, 77, 78, 79, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 102, 103, 105, 107, 108, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 123, 124, 125, 126, 127, 130, 131, 132, 135, 136, 138, 139, 140, 141, 142, 143, 145, 147, 150
Offset: 1

Views

Author

Max Alekseyev, Jan 19 2025

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = if(k == 1, 1, my(v = invsigma(sigma(k))); #v > 1 && gcd(v) == 1); \\ Amiram Eldar, May 28 2025, using Max Alekseyev's invphi.gp (see links).

Formula

Union of {1} and the set difference of A206036 and A241481.

A380304 a(n) = sigma(A380303(n)).

Original entry on oeis.org

1, 12, 18, 12, 24, 24, 31, 18, 42, 32, 24, 60, 31, 42, 56, 72, 32, 48, 54, 48, 60, 56, 90, 42, 96, 84, 72, 48, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 96, 104, 84, 144, 96, 144, 72, 114, 140, 96, 168, 80, 84, 224, 108, 132, 120, 180, 90, 234, 168, 128, 144, 120, 252, 98, 156, 216, 104, 192, 108, 280, 216, 152, 248, 114, 240, 144, 182, 180, 144, 360, 168, 224, 156, 312, 128, 252, 132, 336, 240, 270, 288, 140, 336, 192
Offset: 1

Views

Author

Max Alekseyev, Jan 19 2025

Keywords

Crossrefs

Except for a(1)=1, subsequence of A206421.

Formula

a(n) = sigma(A380303(n)) = A000203(A380303(n)).

A308098 Numbers m such that sequence of their values of sigma(m) corresponds to sequence of unique values of function sigma(n) for n >= 1 in increasing order (A007370).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 9, 13, 8, 19, 12, 29, 22, 37, 18, 27, 43, 49, 61, 32, 67, 73, 45, 36, 50, 101, 109, 91, 81, 64, 121, 137, 149, 157, 133, 106, 163, 98, 173, 129, 169, 193, 72, 197, 199, 134, 211, 100, 146, 229, 241, 128, 217, 257, 171, 148, 277, 281, 283, 219
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Comments

A211656 is the sorted version of this sequence.

Examples

			a(6) = 7 because A007370(6) = 8 and there is only one solution of equation sigma(x) = 8 for x = 7.
		

Crossrefs

Programs

  • Magma
    [[m: m in [1..1000] | SumOfDivisors(m) eq n]:  n in [1..100] | #[#[m]: m in [1..1000] | SumOfDivisors(m) eq n] eq 1]
  • Mathematica
    m = 500; v = Table[0, {m}]; Do[s = DivisorSigma[1, k]; If[s <= m ,  v[[s]] = If[ v[[s]] == 0, k, -1]], {k, 1, m - 1}]; Select[v, # > 0 &] (* Amiram Eldar, Jul 04 2019 *)

Formula

A000203(a(n)) = A007370(n) for all n.
Previous Showing 11-17 of 17 results.