cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A321359 Expansion of Product_{1 <= i <= j <= k} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 108, 137, 179, 226, 286, 365, 457, 570, 720, 894, 1106, 1378, 1700, 2087, 2577, 3151, 3847, 4707, 5723, 6941, 8439, 10197, 12300, 14852, 17863, 21433, 25740, 30797, 36794, 43963, 52372, 62288, 74098, 87905, 104149
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A034836(k).

A327063 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^j).

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 8, 11, 15, 24, 34, 43, 63, 87, 115, 159, 217, 279, 380, 505, 657, 868, 1139, 1458, 1913, 2482, 3162, 4069, 5232, 6628, 8469, 10755, 13544, 17127, 21634, 27061, 33988, 42557, 52985, 66069, 82289, 101862, 126281, 156275, 192655, 237530, 292502
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[(1+x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327064 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^k).

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 35, 62, 110, 197, 339, 573, 975, 1621, 2674, 4385, 7108, 11422, 18277, 28976, 45648, 71531, 111372, 172416, 265695, 407210, 621143, 943392, 1426414, 2147672, 3221271, 4812534, 7163440, 10625651, 15706871, 23141148, 33987287, 49762235
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327065 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 42, 75, 141, 259, 466, 799, 1427, 2443, 4169, 7049, 11863, 19605, 32518, 53184, 86579, 140018, 225380, 359739, 572864, 905903, 1426270, 2234952, 3488313, 5416403, 8383226, 12917257, 19831763, 30334937, 46245977, 70242043, 106371686
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A321286 Expansion of Product_{1 <= i < j} (1 + x^(i*j)).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 6, 8, 10, 14, 16, 22, 28, 33, 43, 55, 64, 84, 102, 123, 153, 188, 224, 277, 335, 401, 486, 589, 695, 843, 1006, 1191, 1428, 1698, 1999, 2384, 2814, 3312, 3914, 4612, 5395, 6355, 7447, 8691, 10182, 11892, 13826, 16146, 18770, 21779, 25313
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^k)^Floor[DivisorSigma[0, k]/2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 02 2018 *)
    nmax = 100; A056924 = Table[Floor[DivisorSigma[0, k]/2], {k, 1, nmax}]; s = 1; Do[s *= Sum[Binomial[A056924[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x],nmax+1] (* Vaclav Kotesovec, Nov 02 2018 *)

Formula

G.f.: Product_{k>0} (1 + x^k)^A056924(k).

A321567 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} (1 + x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 109, 138, 180, 228, 289, 369, 463, 578, 732, 911, 1128, 1407, 1741, 2140, 2646, 3243, 3967, 4861, 5924, 7196, 8767, 10616, 12827, 15516, 18707, 22486, 27054, 32440, 38835, 46488, 55502, 66136, 78836, 93727, 111265
Offset: 0

Views

Author

Seiichi Manyama, Nov 13 2018

Keywords

Crossrefs

Product_{1 <= i_1 <= i_2 <= ... <= i_b} (1 + x^(i_1 * i_2 * ... * i_b)): A000009 (b=1), A211856 (b=2), A321359 (b=3), this sequence (b=4).

Formula

G.f.: Product_{k>0} (1 + x^k)^A218320(k).

A327739 Expansion of 1 / (1 - Sum_{i>=1} Sum_{j=1..i} x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 38, 78, 163, 338, 703, 1458, 3031, 6293, 13073, 27150, 56396, 117130, 243289, 505310, 1049552, 2179938, 4527804, 9404355, 19533126, 40570816, 84266725, 175024267, 363530253, 755062265, 1568285122, 3257371187, 6765649491, 14052439669
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A038548.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          ceil(numtheory[sigma][0](i)/2), i=1..n))
        end:
    seq(a(n), n=0..34);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Floor[(DivisorSigma[0, k] + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A038548(k) * a(n-k).

A282249 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k < j_k, j_k > j_{k+1} and all factors distinct.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 4, 4, 6, 5, 6, 8, 8, 9, 11, 10, 14, 15, 14, 14, 21, 18, 21, 25, 25, 30, 34, 33, 42, 45, 41, 55, 62, 58, 66, 79, 76, 94, 95, 97, 115, 131, 120, 148, 153, 159, 175, 203, 189, 226, 232, 243, 268, 299, 271, 340, 349, 363, 389
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Comments

Or number of partitions of n where part i has multiplicity < i and all multiplicities are distinct and different from all parts.

Examples

			a(0) = 1: the empty sum.
a(6) = 2: 1*6 = 2*3.
a(8) = 2: 1*8 = 2*4.
a(10) = 3: 1*10 = 2*5 = 1*4+2*3.
a(11) = 3: 1*11 = 1*5+2*3 = 2*4+1*3.
a(12) = 4: 1*12 = 2*6 = 1*6+2*3 = 3*4.
a(13) = 4: 1*13 = 1*7+2*3 = 2*5+1*3 = 1*5+2*4.
a(14) = 6: 1*14 = 1*8+2*3 = 2*7 = 1*6+2*4 = 2*5+1*4 = 3*4+1*2.
a(15) = 5: 1*15 = 1*9+2*3 = 1*7+2*4 = 2*6+1*3 = 3*5.
a(25) = 14: 1*25 = 1*19+2*3 = 1*17+2*4 = 1*15+2*5 = 1*13+2*6 = 1*13+3*4 = 2*11+1*3 = 1*11+2*7 = 2*10+1*5 = 1*10+3*5 = 2*9+1*7 = 1*9+2*8 = 3*7+1*4 = 1*7+3*6.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          (((2*n+3)*n-2)*n-`if`(n::odd, 3, 0))/12
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i-1, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = (((2*n + 3)*n - 2)*n - If[OddQ[n], 3, 0])/12;
    g[n_, i_, s_] := If[n==0, 1, If[n>h[i], 0, b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j, Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i - 1, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 01 2018, after Alois P. Heinz *)

A282379 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k <= j_k, j_k > j_{k+1} and all factors distinct with the exception that i_k = j_k is allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 5, 9, 9, 8, 11, 15, 13, 17, 17, 19, 24, 29, 23, 33, 37, 39, 40, 53, 48, 62, 63, 71, 77, 94, 81, 110, 116, 122, 123, 156, 152, 185, 180, 200, 213, 259, 236, 287, 298, 325, 333, 404, 386, 450, 457, 506, 531, 615, 579, 679, 721
Offset: 0

Views

Author

Alois P. Heinz, Feb 13 2017

Keywords

Examples

			a(4) = 2: 1*4 = 2*2.
a(5) = 2: 1*5 = 2*2+1*1.
a(6) = 2: 1*6 = 2*3.
a(7) = 3: 1*7 = 2*3+1*1 = 1*3+2*2.
a(8) = 3: 1*8 = 2*4 = 1*4+2*2.
a(9) = 4: 1*9 = 1*5+2*2 = 2*4+1*1 = 3*3.
a(10) = 5: 1*10 = 1*6+2*2 = 2*5 = 1*4+2*3 = 3*3+1*1.
a(11) = 6: 1*11 = 1*7+2*2 = 2*5+1*1 = 1*5+2*3 = 2*4+1*3 = 3*3+1*2.
a(12) = 5: 1*12 = 1*8+2*2 = 2*6 = 1*6+2*3 = 3*4.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          n*(n+1)*(2*n+1)/6
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = n(n+1)(2n+1)/6;
    g[n_, i_, s_ ] := If[n == 0, 1, If[n > h[i], 0,
         b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] +
         If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j,
         Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)
Previous Showing 11-19 of 19 results.