cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A212411 G.f. satisfies: A(x) = 1 + x*A(1 - 1/A(x))^2.

Original entry on oeis.org

1, 1, 2, 7, 36, 235, 1792, 15261, 141382, 1401334, 14694166, 161714217, 1857003186, 22152227989, 273573165626, 3488210643709, 45820081884234, 618950367384072, 8585324020132250, 122127635117014779, 1779763238159032068, 26545963246376545934
Offset: 0

Views

Author

Paul D. Hanna, May 15 2012

Keywords

Comments

Compare g.f. to the identity: G(x) = 1 + x*G(1-1/G(x)) when G(x) = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 90*x^4 + 570*x^5 + 4247*x^6 +...
1 - 1/A(x) = x + x^2 + 4*x^3 + 23*x^4 + 161*x^5 + 1286*x^6 + 11321*x^7 +...
A(1-1/A(x)) = 1 + x + 3*x^2 + 15*x^3 + 98*x^4 + 753*x^5 + 6471*x^6 +...
Let F(x) = A(1-1/A(x)), then F(1-1/A(x)) = A(1-1/F(x)):
F(1-1/A(x)) = 1 + x + 4*x^2 + 25*x^3 + 193*x^4 + 1693*x^5 + 16240*x^6 +...
...
Let G(x) be the g.f. of A213591, then
G(x) satisfies: x = G(x - G(x)^2) and G(x) = A(G(x)^2/x), where:
G(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
G(x)^2/x = x + 2*x^2 + 9*x^3 + 56*x^4 + 420*x^5 + 3572*x^6 +...
1/(1-G(x)^2/x) = 1 + x + 3*x^2 + 14*x^3 + 85*x^4 + 616*x^5 + 5072*x^6 +...
such that A(x/(1 - G(x)^2/x)) = 1/(1 - G(x)^2/x).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*subst(A^2,x,1-1/(A+x*O(x^n))));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

Given g.f. A(x), let G(x) be the g.f. of A213591, then:
(1) G(x) = x*A(G(x)^2/x),
(2) A( x/(1 - G(x)^2/x) ) = 1/(1 - G(x)^2/x),
(3) x = G(x - G(x)^2).
G.f.: A(x) = x/Series_Reversion(F(x)) where F(x) = 1 - (x^2/F(x))/F(x^2/F(x)) is the g.f. of A213628.
Given g.f. A(x), let F(x) = A(1-1/A(x)), then F(1-1/A(x)) = A(1-1/F(x)) and A(x) = 1 + x*F(x)^2.

A276370 G.f. A(x) satisfies: A( x - A(x) ) = x^2.

Original entry on oeis.org

1, 2, 9, 56, 420, 3572, 33328, 334354, 3559310, 39838760, 465743720, 5658983108, 71191948512, 924554859776, 12365546196641, 169995491295312, 2398380272232272, 34680290150700800, 513390937937217088, 7773229533145403728, 120277760289804227632, 1900583166564027019136, 30649888151334972466392, 504153517331248726221392, 8454018409655883681321232, 144451967918022160558965408
Offset: 2

Views

Author

Paul D. Hanna, Sep 09 2016

Keywords

Comments

An unsigned version of A138740 (apart from initial term).
Self-convolution of A213591.

Examples

			G.f.: A(x) = x^2 + 2*x^3 + 9*x^4 + 56*x^5 + 420*x^6 + 3572*x^7 + 33328*x^8 + 334354*x^9 + 3559310*x^10 + 39838760*x^11 + 465743720*x^12 +...
such that A( x - A(x) ) = x^2.
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=x^2); for(i=1, n, A = serreverse(x - A +x*O(x^n))^2); polcoeff(A, n)}
    for(n=2,30,print1(a(n),", "))
    
  • PARI
    {Dx(n, F) = local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = local(A=x^2 +x*O(x^n)); for(i=1, n, A = (x + sum(m=1, n, Dx(m-1, A^m)/m!) +x*O(x^n))^2); polcoeff(A, n)}
    for(n=2,30,print1(a(n),", "))

Formula

G.f. satisfies:
(1) A(x) = ( x + A( sqrt(A(x)) ) )^2.
(2) A(x) = ( x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n / n! )^2.
(3) A(x) = x^2 * exp( 2*Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n/x / n! ).
(4) A(x) = x^2 * G( A(x)/x )^2 where G(x) = 1 + x*G( 1 - 1/G(x) )^2 is the g.f. of A212411.
(5) A(x) = x^2 * F( sqrt(A(x)) )^2 where F(x) = 1 - (x^2/F(x)) / F( x^2/F(x) ) is the g.f. of A213628.

A213639 G.f. A(x) satisfies x = A( x - A(x)^3/x ).

Original entry on oeis.org

1, 1, 5, 38, 357, 3832, 45189, 572378, 7676653, 107971691, 1581714400, 24012849880, 376361077578, 6071985730614, 100602798234000, 1708558136679750, 29698002444820760, 527661478169200755, 9573199146196780335, 177192815265794698364, 3343432166097650920872
Offset: 1

Views

Author

Paul D. Hanna, Jun 16 2012

Keywords

Examples

			G.f.: A(x) = x + x^2 + 5*x^3 + 38*x^4 + 357*x^5 + 3832*x^6 + 45189*x^7 +...
Related series:
A(x)^3/x = x^2 + 3*x^3 + 18*x^4 + 145*x^5 + 1389*x^6 + 14967*x^7 +...
A(A(x)) = x + 2*x^2 + 12*x^3 + 102*x^4 + 1042*x^5 + 11977*x^6 + 149776*x^7 +...
A(A(x))^3/A(x) = x^2 + 5*x^3 + 38*x^4 + 357*x^5 + 3832*x^6 + 45189*x^7 + ...
The g.f. satisfies:
A(x) = x + A(x)^3/x + [d/dx A(x)^6/x^2]/2! + [d^2/dx^2 A(x)^9/x^3]/3! + [d^3/dx^3 A(x)^12/x^4]/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^3/x^2 + [d/dx A(x)^6/x^3]/2! + [d^2/dx^2 A(x)^9/x^4]/3! + [d^3/dx^3 A(x)^12/x^5]/4! +...
From _Seiichi Manyama_, Jun 05 2025: (Start)
Let b(n,k) = [x^n] (A(x)/x)^k.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * b(n-j,3*j).
a(n) = b(n-1,1). (End)
		

Crossrefs

Cf. A213591.

Programs

  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^3/x+x*O(x^n))); polcoeff(A, n))}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(3*m)/x^m)/m!)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(3*m)/x^(m+1))/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1, 21, print1(a(n), ", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 3*j)));
    a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025

Formula

G.f. satisfies:
(1) A(x) = x + A(A(x))^3 / A(x).
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/x^n / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/x^(n+1) / n! ).

A277310 G.f. satisfies: A(x - 4*A(x)^2) = x - 3*A(x)^2.

Original entry on oeis.org

1, 1, 10, 141, 2422, 47562, 1031764, 24214405, 606444990, 16055089470, 446238074892, 12955112773554, 391332183548956, 12261884937532340, 397576302315045800, 13313017677172350965, 459635990935574444942, 16339309997761322057206, 597340515437542895494748, 22435278085988347895795526, 864900964565994975048855444, 34195693888939483596581262668, 1385553440866978431053220575128
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 10*x^3 + 141*x^4 + 2422*x^5 + 47562*x^6 + 1031764*x^7 + 24214405*x^8 + 606444990*x^9 + 16055089470*x^10 +...
such that A(x - 4*A(x)^2) = x - 3*A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 21*x^4 + 302*x^5 + 5226*x^6 + 102788*x^7 + 2226973*x^8 + 52126582*x^9 + 1301232638*x^10 + 34328704796*x^11 + 950803699394*x^12 + 27510261070028*x^13 + 828332416917876*x^14 + 25876801064095496*x^15 + 836682915170627501*x^16 +...
A(x - 4*A(x)^2) = x - 3*x^2 - 6*x^3 - 63*x^4 - 906*x^5 - 15678*x^6 - 308364*x^7 - 6680919*x^8 - 156379746*x^9 - 3903697914*x^10 +...
which equals x - 3*A(x)^2.
Series_Reversion(x - 4*A(x)^2) = x + 4*x^2 + 40*x^3 + 564*x^4 + 9688*x^5 + 190248*x^6 + 4127056*x^7 + 96857620*x^8 + 2425779960*x^9 + 64220357880*x^10 +...
which equals -3*x + 4*A(x).
A( 4*A(x) - 3*x ) = x + 5*x^2 + 58*x^3 + 921*x^4 + 17494*x^5 + 374994*x^6 + 8793460*x^7 + 221393569*x^8 + 5912166718*x^9 + 166058455158*x^10 + 4876311925036*x^11 + 149037482367530*x^12 + 4724877954111836*x^13 + 154959634972646340*x^14 + 5246331138228520168*x^15 +...
which equals  sqrt( A(x) - x ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-4*F^2) + 3*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 4*A(x) - 3*x )^2.
(2) A(x) = 3*x/4 + 1/4 * Series_Reversion(x - 4*A(x)^2).
(3) R(x) = 4*x/3 - 1/3 * Series_Reversion(x - 3*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = 4*x - 3*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} 4^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 4^k.

A360578 Expansion of g.f. A(x) satisfying A(x) = Series_Reversion( x - x*A'(x)*A(x) ).

Original entry on oeis.org

1, 1, 5, 42, 471, 6422, 101439, 1803949, 35459549, 760744865, 17651187689, 439893743313, 11711735210140, 331666197753372, 9954249177284539, 315638779480717743, 10545365878475964736, 370309787453143694246, 13637805276205022293179, 525684316153586923528166
Offset: 1

Views

Author

Paul D. Hanna, Feb 21 2023

Keywords

Examples

			G.f.: A(x) = x + x^2 + 5*x^3 + 42*x^4 + 471*x^5 + 6422*x^6 + 101439*x^7 + 1803949*x^8 + 35459549*x^9 + 760744865*x^10 + ...
such that A( x - x*A'(x)*A(x) ) = x.
Related series.
Series_Reversion(A(x)) = x - x^2 - 3*x^3 - 22*x^4 - 235*x^5 - 3153*x^6 - 49721*x^7 - 888784*x^8 - 17615520*x^9 + ...
A'(x)*A(x) = x + 3*x^2 + 22*x^3 + 235*x^4 + 3153*x^5 + 49721*x^6 + 888784*x^7 + 17615520*x^8 + ...
A(A(x)) = x + 2*x^2 + 12*x^3 + 110*x^4 + 1294*x^5 + 18127*x^6 + 290620*x^7 + 5206800*x^8 + 102633591*x^9 + ...
A'(A(x)) = 1 + 2*x + 17*x^2 + 208*x^3 + 3108*x^4 + 53328*x^5 + 1018948*x^6 + 21297818*x^7 + 481458997*x^8 + ...
A'(A(x))*A(A(x)) = x + 4*x^2 + 33*x^3 + 376*x^4 + 5242*x^5 + 84625*x^6 + 1534652*x^7 + 30682881*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A=serreverse(x - x*A'*A +x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=x); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, x^m*(A')^m*A^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); for(i=1, n, A = x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*(A')^m*A^m/m!)) +O(x^(n+1)))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A( x - x*A'(x)*A(x) ) = x.
(2) A(x) = x + A(x) * A'(A(x)) * A(A(x)).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n * A'(x)^n * A(x)^n / n!.
(4) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1) * A'(x)^n * A(x)^n / n! ).
a(n) ~ c * n! * n^alfa / LambertW(1)^n, where alfa = 1.5447806483693... and c = 0.02888888614196289496..., conjecture: alfa = 2*(2*LambertW(1) - 1 + 1/(1 + LambertW(1))). - Vaclav Kotesovec, Feb 22 2023

A213628 G.f. satisfies: A(x) = 1 - (x^2/A(x)) / A( x^2/A(x) ).

Original entry on oeis.org

1, 1, 3, 14, 85, 616, 5072, 46013, 450739, 4702265, 51731956, 595874703, 7147366614, 88905147730, 1143097097833, 15152617826426, 206646826047563, 2894398418226395, 41577147999077079, 611779190051375147, 9211548488261257610, 141802624561414800815
Offset: 1

Views

Author

Paul D. Hanna, Jun 16 2012

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 +...
Related expansions:
x^2/A(x) = x - x^2 - 2*x^3 - 9*x^4 - 56*x^5 - 420*x^6 - 3572*x^7 -...
A(x^2/A(x)) = x - x^3 - 7*x^4 - 50*x^5 - 395*x^6 - 3436*x^7 -...
A(x) = x^2/Series_Reversion(G(x)) where G(x) is the g.f. of A213591:
G(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
such that G(x - G(x)^2) = x.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x,G=x); if(n<1, 0, for(i=1, n, G=serreverse(x - G^2+x*O(x^n)));A=x^2/(x-G^2);polcoeff(A, n))}
    for(n=1,25,print1(a(n),", "))

Formula

G.f.: A(x) = x^2/(x - G(x)^2) where G(x) is the g.f. of A213591 such that G(x^2/A(x)) = G(x - G(x)^2) = x.
G.f.: A(x) = Series_Reversion(x*F(x)) where F(x) = 1 + x*F(1 - 1/F(x))^2 is the g.f. of A212411.

A227852 G.f. A(x) satisfies: A(x) = Series_Reversion( x - (A(x)^2 + A(-x)^2)/2 ).

Original entry on oeis.org

1, 1, 2, 10, 44, 294, 1728, 13389, 93130, 796620, 6235288, 57551130, 493813936, 4857378920, 44989814920, 468103507718, 4633862094852, 50749496457992, 533271010341720, 6126256486912776, 67990630238066888, 817168635245112432, 9541543704324657008, 119719059789052412360
Offset: 1

Views

Author

Paul D. Hanna, Oct 31 2013

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 10*x^4 + 44*x^5 + 294*x^6 + 1728*x^7 +...
The series reversion of A(x), G(x) where A(G(x)) = x, begins:
G(x) = x - x^2 - 5*x^4 - 112*x^6 - 4320*x^8 - 227766*x^10 - 14942616*x^12 - 1162657840*x^14 +...+ (-1)^n * A263531(n)*x^(2*n) +...
and can be formed from a bisection of A(x)^2:
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 24*x^5 + 112*x^6 + 716*x^7 + 4320*x^8 + 32290*x^9 + 227766*x^10 + 1893488*x^11 + 14942616*x^12 + 134816212*x^13 + 1162657840*x^14 +...
The related g.f. of A263531, F(x) = -(A(I*x)^2 + A(-I*x)^2)/2, satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1:
F(x) = x^2 - 5*x^4 + 112*x^6 - 4320*x^8 + 227766*x^10 - 14942616*x^12 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x);for(i=1,n,A=serreverse(x-(A^2+subst(A^2,x,-x +x*O(x^n)))/2));polcoeff(A,n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, (A^2+subst(A,x,-x)^2)^m/2^m/m!))+x*O(x^n)); polcoeff(A,n)}
    for(n=1,25,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = x + (A(A(x))^2 + A(-A(x))^2)/2.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x)^2 + A(-x)^2)^n / (n!*2^n).
(3) (A(I*x)^2 + A(-I*x)^2)/2 = -F(x), where F(x) is the g.f. of A263531 and satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1.

A276365 G.f. A(x) satisfies: A(x - 2*A(x)^2) = x - A(x)^2.

Original entry on oeis.org

1, 1, 6, 53, 578, 7234, 100044, 1495125, 23802346, 399740086, 7032766196, 128952474242, 2454645604820, 48359400068836, 983683769369624, 20618782389897333, 444636132851851386, 9851377271964349038, 223998085060636514020, 5221799494107885481430, 124695762315403816775932, 3047952254964607540099676, 76206565881709345978097960, 1947752912315470845518308642, 50860833685759573411702643972
Offset: 1

Views

Author

Paul D. Hanna, Sep 01 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 6*x^3 + 53*x^4 + 578*x^5 + 7234*x^6 + 100044*x^7 + 1495125*x^8 + 23802346*x^9 + 399740086*x^10 + 7032766196*x^11 +...
such that A(x - 2*A(x)^2) = x - A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - 2*A(x)^2) = 2*A(x) - x, which begins:
Series_Reversion(x - 2*A(x)^2) = x + 2*x^2 + 12*x^3 + 106*x^4 + 1156*x^5 + 14468*x^6 + 200088*x^7 + 2990250*x^8 + 47604692*x^9 + 799480172*x^10 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - x^2 - 4*x^3 - 28*x^4 - 264*x^5 - 2992*x^6 - 38496*x^7 - 544464*x^8 - 8298080*x^9 - 134500672*x^10 - 2297361024*x^11 +...
then Series_Reversion(x - A(x)^2) = 2*x - R(x), and
R(x) = x - G(x)^2, where G(x) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1208*x^5 + 15536*x^6 + 220832*x^7 + 3390480*x^8 + ... + A177409(n)*x^n + ...
Also, sqrt(A(x) - x) = A(2*A(x) - x), which begins:
sqrt(A(x) - x) = x + 3*x^2 + 22*x^3 + 223*x^4 + 2706*x^5 + 36998*x^6 + 552172*x^7 + 8827263*x^8 + 149328698*x^9 + 2650946274*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    m = 26; A[_] = 0;
    Do[A[x_] = x + A[2 A[x] - x]^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 2*F^2) + F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 2*A(x) - x )^2.
(2) 2*A(x) = x + Series_Reversion(x - 2*A(x)^2).
(3) R(x) = 2*x - Series_Reversion(x - A(x)^2), where R(A(x)) = x.
(4) R( (x - R(x))^(1/2) ) = 2*x - R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} 2^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
(6) A(x) = x + G(A(x))^2, where G(x) = sqrt(x - R(x)) is the g.f. of A177409, and R(A(x)) = x. - Paul D. Hanna, Nov 18 2022
a(n) = Sum_{k=0..n-1} A277295(n,k)*2^k.

A371708 Expansion of g.f. A(x) satisfying A( x*A(x - x^2) ) = x^2.

Original entry on oeis.org

1, 1, 1, 2, 6, 19, 60, 193, 636, 2141, 7331, 25451, 89385, 317036, 1134100, 4087104, 14825482, 54088470, 198348985, 730723956, 2703194553, 10037648254, 37399878530, 139785998185, 523962161491, 1969154471389, 7418488063284, 28010998254007, 105986233046356, 401804972780552
Offset: 1

Views

Author

Paul D. Hanna, Apr 23 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 19*x^6 + 60*x^7 + 193*x^8 + 636*x^9 + 2141*x^10 + 7331*x^11 + 25451*x^12 + 89385*x^13 + 317036*x^14 + ...
where A( x*A(x - x^2) ) = x^2.
RELATED SERIES.
Let R(x) be the series reversion of A(x), A(R(x)) = x, which begins
R(x) = x - x^2 + x^3 - 2*x^4 + 2*x^5 - 5*x^6 + 6*x^7 - 16*x^8 + 23*x^9 - 62*x^10 + 100*x^11 - 270*x^12 + 463*x^13 - 1254*x^14 + 2224*x^15 - 6050*x^16 + ...
then R( R(x^2)/x ) = x - x^2.
Also, the bisections B1 and B2 of R(x) are
B1 = (R(x) - R(-x))/2 = x + x^3 + 2*x^5 + 6*x^7 + 23*x^9 + 100*x^11 + 463*x^13 + 2224*x^15 + 10963*x^17 + ...
B2 = (R(x) + R(-x))/2 = -x^2 - 2*x^4 - 5*x^6 - 16*x^8 - 62*x^10 - 270*x^12 - 1254*x^14 - 6050*x^16 + ...
and satisfy B1^2 + B2 = 0 and A(x*B1) = B1^2.
SPECIFIC VALUES.
A( A(1/4) / 2 ) = 1/4 where
A(1/4) = 0.39241307250698647662923990494867613212061604622566765...
A( A(2/9) / 3 ) = 1/9 where
A(2/9) = 0.29957319341272312632777466712131772539171747971866175...
A( A(3/16) / 4 ) = 1/16 where
A(3/16) = 0.2352360051274118086289466324430753987734355106832392...
A( A(4/25) / 5 ) = 1/25 where
A(4/25) = 0.1922953260179964363449115205476634347705922222443464...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( x^2 - subst(Ser(A),x, x*subst(Ser(A),x, x - x^2) ), #A));A[n+1]}
    for(n=1,35,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with its series reversion R(x), satisfy the following formulas.
(1) A( x*A(x - x^2) ) = x^2.
(2) A(x - x^2) = R(x^2)/x.
(3) (R(x) - R(-x))^2 + 2*(R(x) + R(-x)) = 0.
(4) R(x) = R(-x) - 1 + sqrt(1 - 4*R(-x)).
(5) A(x) = -A( x - 1 + sqrt(1 - 4*x) ).
(6) A(x) = -A(x - 2*C(x)) where C(x) = -C(x - 2*C(x)) is a g.f. of the Catalan numbers (A000108).
(7) A( A(x)*C(x) ) = C(x)^2 where C(x) = (1 - sqrt(1 - 4*x))/2 is a g.f. of the Catalan numbers (A000108).
a(n) ~ c * 4^n / n^(3/2), where c = 0.0517683007874758928168667... - Vaclav Kotesovec, Apr 24 2024

A376176 G.f. A(x) satisfies x = A( x - A(x)^4/x^2 ).

Original entry on oeis.org

1, 1, 6, 55, 622, 8015, 113164, 1711898, 27357970, 457507917, 7952476482, 142972019125, 2648639456048, 50415218306637, 983728646223556, 19641163430509505, 400671660024507294, 8340743906266061866, 176998642509849677206, 3825680705425292568049, 84159282700462688412042
Offset: 1

Views

Author

Paul D. Hanna, Sep 21 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 6*x^3 + 55*x^4 + 622*x^5 + 8015*x^6 + 113164*x^7 + 1711898*x^8 + 27357970*x^9 + 457507917*x^10 + ...
where x = A( x - A(x)^4/x^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 13*x^4 + 122*x^5 + 1390*x^6 + 17934*x^7 + 252847*x^8 + 3814724*x^9 + ...
A(x)^3 = x^3 + 3*x^4 + 21*x^5 + 202*x^6 + 2322*x^7 + 30030*x^8 + 423111*x^9 + 6369930*x^10 + ...
where A(x)^3 = x*A(x)^2 + A(A(x))^4.
A(x)^4 = x^4 + 4*x^5 + 30*x^6 + 296*x^7 + 3437*x^8 + 44600*x^9 + 628454*x^10 + 9446280*x^11 + ...
A(A(x))^4 = x^4 + 8*x^5 + 80*x^6 + 932*x^7 + 12096*x^8 + 170264*x^9 + 2555206*x^10 + 40413484*x^11 + ...
where A(x) = x + A(A(x))^4 / A(x)^2.
A(A(x)) = x + 2*x^2 + 14*x^3 + 141*x^4 + 1712*x^5 + 23392*x^6 + 347444*x^7 + 5498681*x^8 + 91552406*x^9 + ...
A(A(x))^2/A(x) = x + 3*x^2 + 23*x^3 + 242*x^4 + 3017*x^5 + 41965*x^6 + 631381*x^7 + 10089533*x^8 + 169256922*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^4/x^2 +x*O(x^n))); polcoeff(A, n))}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m+1))/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 4*j)));
    a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( x - A(x)^4/x^2 ).
(2) A(x)^3 = x*A(x)^2 + A(A(x))^4.
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(4*n)/x^(2*n) / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(4*n)/x^(2*n+1) / n! ).
From Seiichi Manyama, Jun 05 2025: (Start)
Let b(n,k) = [x^n] (A(x)/x)^k.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * b(n-j,4*j).
a(n) = b(n-1,1). (End)
Previous Showing 21-30 of 40 results. Next