cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A219046 Numbers k such that 3^k + 28 is prime.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 14, 16, 25, 50, 54, 66, 76, 109, 124, 129, 154, 201, 210, 225, 324, 844, 1444, 2529, 3029, 3292, 3340, 9162, 44721, 45662, 114085, 197542
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(33) > 2*10^5. - Robert Price, Nov 12 2013

Examples

			3^2 + 28 = 37 and 37 is prime, so 2 is a term.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n + 28], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n+28) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(29)-a(32) from Robert Price, Nov 12 2013

A219047 Numbers k such that 3^k - 28 is prime.

Original entry on oeis.org

4, 6, 10, 15, 22, 24, 27, 35, 63, 91, 95, 96, 124, 132, 220, 280, 338, 372, 432, 568, 692, 738, 1144, 1168, 1698, 2080, 2138, 2710, 2895, 2984, 3536, 3816, 4462, 4972, 6588, 6666, 10350, 58991, 68854, 145806, 163500, 196192
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(43) > 2*10^5. - Robert Price, Dec 10 2013

Examples

			3^4 - 28 = 53 (prime), so 4 is in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n - 28], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n-28) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(37)-a(42) from Robert Price, Dec 10 2013

A219048 Numbers k such that 3^k + 32 is prime.

Original entry on oeis.org

2, 3, 4, 6, 23, 24, 38, 164, 172, 176, 207, 216, 251, 272, 424, 1112, 1318, 2072, 2664, 3143, 4704, 5236, 9526, 13064, 13523, 27111, 35931, 37504, 47542, 128656, 181551
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(32) > 2*10^5. - Robert Price, Nov 15 2013

Examples

			For k = 2, 3^2 + 32 = 41 (prime). Hence k = 2 is in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n + 32], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n+32) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(23)-a(31) from Robert Price, Nov 15 2013

A219049 Numbers k such that 3^k - 32 is prime.

Original entry on oeis.org

5, 8, 18, 21, 69, 84, 181, 216, 461, 642, 672, 2413, 3681, 5666, 12281, 14949, 19508, 27817, 34061, 43236, 43733, 81828
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(23) > 2*10^5. - Robert Price, Dec 22 2013

Examples

			3^5 - 32 = 211 (prime), so 5 is in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n - 32], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n-32) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(15)-a(22) from Robert Price, Dec 22 2013

A219050 Numbers k such that 3^k + 34 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 17, 27, 34, 51, 57, 61, 89, 98, 171, 547, 569, 769, 874, 1105, 2198, 2307, 3937, 4685, 5105, 5582, 11131, 11821, 15902, 24626, 36401, 46195, 50974, 65198, 66685
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(37) > 2*10^5. - Robert Price, Nov 24 2013

Examples

			For k = 2, 3^2 + 34 = 43 (prime), so 2 is in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n + 34], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n+34) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(28)-a(36) from Robert Price, Nov 24 2013

A219051 Numbers k such that 3^k - 34 is prime.

Original entry on oeis.org

4, 7, 11, 13, 29, 32, 36, 44, 79, 157, 197, 341, 467, 996, 1421, 2479, 3269, 5203, 7987, 9341, 14836, 26047, 47816, 64304, 100693, 127597, 167167, 174697, 182089, 198791
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(31) > 2*10^5. - Robert Price, Nov 23 2013

Examples

			For k = 4, 3^4 - 34 = 47 and 47 is prime. Hence k = 4 is included in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n - 34], Print[n]], {n, 1, 10000}]
    Select[Range[10000], PrimeQ[3^# - 34] &] (* Alonso del Arte, Nov 10 2012 *)
  • PARI
    is(n)=isprime(3^n-34) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(21)-a(30) from Robert Price, Nov 23 2013

A102907 Primes of the form 3^k + 10.

Original entry on oeis.org

11, 13, 19, 37, 739, 6571, 387420499, 150094635296999131, 57264168970223481226273458862846808078011946899, 2465034704958067503996131453373943813074726512397600979
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2005

Keywords

Crossrefs

Cf. A000040, A217137 (corresponding k's).

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 3^n+10]; // Vincenzo Librandi, Nov 16 2010
  • Mathematica
    a = Delete[Union[Flatten[Table[If [PrimeQ[3^n + 10] == True, 3^n + 10, 0], {n, 1, 200}]]], 1]

Formula

a(n) = 3^A217137(n) + 10. - Elmo R. Oliveira, Nov 11 2023

A217492 Numbers k such that 9^k + 10 is prime.

Original entry on oeis.org

0, 1, 3, 4, 9, 18, 49, 57, 67, 69, 106, 126, 258, 583, 1221, 1366, 4311, 11361, 12621, 14964, 16017, 22467, 25434, 45094, 51051, 89113
Offset: 1

Views

Author

Vincenzo Librandi, Oct 05 2012

Keywords

Comments

Contains exactly the halved even terms of A217137.

Crossrefs

Programs

Extensions

a(18)-a(26) added from the data at A217137 by Amiram Eldar, Jun 19 2022

A217493 Numbers k such that 9^k - 10 is prime.

Original entry on oeis.org

2, 3, 4, 9, 11, 18, 19, 27, 28, 46, 50, 53, 80, 155, 203, 280, 451, 4963, 6167, 9687, 10083, 31450
Offset: 1

Views

Author

Vincenzo Librandi, Oct 05 2012

Keywords

Comments

Contains exactly the halved even terms of A217347.

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[9^# - 10] &]
  • PARI
    is(n)=ispseudoprime(9^n-10) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(19)-a(22) added from the data at A217347 by Amiram Eldar, Jun 19 2022

A255542 a(n) = number of prime factors of (3^n + 10) counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 1, 2, 4, 3, 2, 3, 2, 3, 5, 3, 1, 3, 3, 3, 4, 2, 3, 4, 2, 6, 4, 3, 3, 4, 3, 2, 5, 4, 1, 4, 5, 5, 5, 2, 4, 3, 3, 5, 5, 2, 2, 5, 4, 3, 4, 3, 3, 6, 4, 4, 5, 5, 7, 3, 3, 4, 5, 5, 2, 6, 3, 5, 5, 4, 4, 5, 3, 7, 6, 4, 4, 3, 2, 4, 5, 4, 2, 4, 3, 2, 4, 4, 4, 5, 4, 6, 7, 4, 3, 5, 1, 4
Offset: 0

Views

Author

Zak Seidov, Feb 25 2015

Keywords

Examples

			a(0) = 1 because 3^0+10 = 11 is prime.
a(4) = 2 because 3^4+10 = 91 = 7*13 is semiprime.
a(7) = 3 because 3^7+10 = 2197 = 13*13*13 is 3-almost prime.
a(10) = 4 because 3^7+10 = 59059 = 7*11*13*59 is 4-almost prime.
a(16) = 5 because 3^16+10 = 43046731 = 7*13*23*131*157 is 5-almost prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= PrimeOmega[3^n+10];
  • PARI
    a(n) = bigomega(3^n+10);

Formula

a(n) = A001222(3^n+10).
Previous Showing 11-20 of 20 results.