cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A329072 Numbers that are sums of consecutive octahedral numbers (A005900).

Original entry on oeis.org

0, 1, 6, 7, 19, 25, 26, 44, 63, 69, 70, 85, 129, 146, 148, 154, 155, 231, 275, 294, 300, 301, 344, 377, 462, 489, 506, 525, 531, 532, 575, 670, 721, 806, 833, 850, 869, 875, 876, 891, 1064, 1156, 1159, 1210, 1295, 1339, 1358, 1364, 1365, 1469, 1503, 1561, 1734
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A329597 Numbers that are sums of consecutive icosahedral numbers (A006564).

Original entry on oeis.org

0, 1, 12, 13, 48, 60, 61, 124, 172, 184, 185, 255, 379, 427, 439, 440, 456, 711, 742, 835, 883, 895, 896, 1128, 1198, 1453, 1577, 1625, 1629, 1637, 1638, 1870, 2260, 2326, 2581, 2705, 2753, 2757, 2765, 2766, 3036, 3499, 3889, 3955, 3972, 4210, 4334, 4382, 4394, 4395
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A329599 Numbers that are sums of consecutive dodecahedral numbers (A006566).

Original entry on oeis.org

0, 1, 20, 21, 84, 104, 105, 220, 304, 324, 325, 455, 675, 759, 779, 780, 816, 1271, 1330, 1491, 1575, 1595, 1596, 2024, 2146, 2601, 2821, 2905, 2925, 2926, 3354, 4060, 4170, 4625, 4845, 4929, 4949, 4950, 5456, 6279, 6985, 7095, 7140, 7550, 7770, 7854, 7874, 7875, 9009, 9139, 9516
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A217845 Numbers which are the sums of consecutive fifth powers.

Original entry on oeis.org

0, 1, 32, 33, 243, 275, 276, 1024, 1267, 1299, 1300, 3125, 4149, 4392, 4424, 4425, 7776, 10901, 11925, 12168, 12200, 12201, 16807, 24583, 27708, 28732, 28975, 29007, 29008, 32768, 49575, 57351, 59049, 60476, 61500, 61743, 61775, 61776, 91817, 100000, 108624
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nMax = 200000; t = {0}; Do[k = n; s = 0; While[s = s + k^5; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/5)}]; t = Union[t]

A217846 Numbers which are the sums of consecutive sixth powers.

Original entry on oeis.org

0, 1, 64, 65, 729, 793, 794, 4096, 4825, 4889, 4890, 15625, 19721, 20450, 20514, 20515, 46656, 62281, 66377, 67106, 67170, 67171, 117649, 164305, 179930, 184026, 184755, 184819, 184820, 262144, 379793, 426449, 442074, 446170, 446899, 446963, 446964, 531441
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Crossrefs

Subsequences include A001014 and A008516.

Programs

  • Mathematica
    nMax = 10^6; t = {0}; Do[k = n; s = 0; While[s = s + k^6; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/6)}]; t = Union[t]
  • PARI
    list(lim)=my(v=List(apply(n->n^6, [0..sqrtnint(lim\=1,6)])),s); for(n=2,lim, s=n*(n-1)*(2*n-1)*(3*n^4-6*n^3+3*n+1)/42; if(s>lim,break); for(k=n,lim, s+=k^6-(k-n)^6; if(s>lim,break); listput(v,s))); Set(v) \\ Charles R Greathouse IV, Apr 22 2020

A217849 Numbers which are the sums of consecutive ninth powers.

Original entry on oeis.org

0, 1, 512, 513, 19683, 20195, 20196, 262144, 281827, 282339, 282340, 1953125, 2215269, 2234952, 2235464, 2235465, 10077696, 12030821, 12292965, 12312648, 12313160, 12313161, 40353607, 50431303, 52384428, 52646572, 52666255, 52666767, 52666768, 134217728
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nMax = 10^9; t = {0}; Do[k = n; s = 0; While[s = s + k^9; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/9)}]; t = Union[t]

A307609 Number of partitions of n^3 into consecutive positive cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			20^3 = 11^3 + 12^3 + 13^3 + 14^3, so a(20) = 2.
2856^3 = 213^3 +...+ 555^3 = 273^3 +...+ 560^3, so a(2856) = 3. See also _Donovan Johnson_'s comment in A097811. - _Antti Karttunen_, Aug 22 2019
		

Crossrefs

Programs

  • PARI
    A297199(n) = { my(s=0, k=1, c); while((c=k^3) <= n, my(u=n-c, i=k); while(u>0, i++; c = i^3; u=u-c); s += (!u); k++); (s); };
    A307609(n) = A297199(n^3); \\ Antti Karttunen, Aug 22 2019

Formula

a(n) = [x^(n^3)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^3).
a(n) = A297199(A000578(n)).
a(n) >= 2 for n in A097811.

A217847 Numbers which are the sums of consecutive seventh powers.

Original entry on oeis.org

0, 1, 128, 129, 2187, 2315, 2316, 16384, 18571, 18699, 18700, 78125, 94509, 96696, 96824, 96825, 279936, 358061, 374445, 376632, 376760, 376761, 823543, 1103479, 1181604, 1197988, 1200175, 1200303, 1200304, 2097152, 2920695, 3200631, 3278756, 3295140
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nMax = 10^7; t = {0}; Do[k = n; s = 0; While[s = s + k^7; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/7)}]; t = Union[t]

A217848 Numbers which are the sums of consecutive eighth powers.

Original entry on oeis.org

0, 1, 256, 257, 6561, 6817, 6818, 65536, 72097, 72353, 72354, 390625, 456161, 462722, 462978, 462979, 1679616, 2070241, 2135777, 2142338, 2142594, 2142595, 5764801, 7444417, 7835042, 7900578, 7907139, 7907395, 7907396, 16777216, 22542017, 24221633, 24612258
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nMax = 10^8; t = {0}; Do[k = n; s = 0; While[s = s + k^8; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/8)}]; t = Union[t]

A228004 Prime powers p^m with m >= 2 which are not the sum of consecutive cubes.

Original entry on oeis.org

4, 16, 25, 32, 49, 81, 121, 128, 169, 243, 256, 289, 361, 529, 625, 841, 961, 1024, 1369, 1681, 1849, 2048, 2187, 2209, 2401, 2809, 3125, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 16129
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 07 2013

Keywords

Examples

			9 is not in the sequence since it is equal to 1^3 + 2^3.
		

Crossrefs

Programs

  • Magma
    lst:=[]; r:=26; c:=r^3; for n in [2..r] do for m in [n-1..0 by -1] do s:=((n^2+n)^2-(m^2+m)^2)/4; if s gt c then break; end if; if not s in lst then Append(~lst, s); end if; end for; end for; lst:=Sort(lst); [p: p in [2..c] | not IsPrime(p) and IsPrimePower(p) and not p in lst];
Previous Showing 11-20 of 25 results. Next