cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A257825 Positive integers whose square is the sum of 74 consecutive squares.

Original entry on oeis.org

2257, 2849, 21941, 27713, 604765, 763865, 16669573, 21054961, 162316669, 205018517, 4474051285, 5651073085, 123321498797, 155764598629, 1200818695321, 1516726961053, 33099030801665, 41806637918965, 912332431430633, 1152346479602381, 8883656545668089
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-148*y^2-10804*y-264698 = 0.

Examples

			2257 is in the sequence because 2257^2 = 5094049 = 225^2+226^2+...+298^2.
		

Crossrefs

Programs

  • Magma
    I:=[2257,2849,21941,27713,604765,763865,16669573, 21054961,162316669,205018517,4474051285,5651073085]; [n le 12 select I[n] else 7398*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
     LinearRecurrence[{0, 0, 0, 0, 0, 7398, 0, 0, 0, 0, 0, -1}, {2257, 2849, 21941, 27713, 604765, 763865, 16669573, 21054961, 162316669, 205018517, 4474051285, 5651073085}, 40] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)) + O(x^100))
    

Formula

a(n) = 7398*a(n-6)-a(n-12).
G.f.: -37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)).

A257827 Positive integers whose square is the sum of 96 consecutive squares.

Original entry on oeis.org

652, 724, 788, 1012, 1828, 2372, 2596, 2908, 6164, 6908, 7564, 9836, 17996, 23404, 25628, 28724, 60988, 68356, 74852, 97348, 178132, 231668, 253684, 284332, 603716, 676652, 740956, 963644, 1763324, 2293276, 2511212, 2814596, 5976172, 6698164, 7334708
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-192*y^2-18240*y-580640 = 0.

Examples

			652 is in the sequence because 652^2 = 425104 = 13^2+14^2+...+108^2.
		

Crossrefs

Programs

  • Magma
    I:=[652,724,788,1012,1828,2372,2596,2908,6164,6908, 7564,9836,17996,23404,25628,28724]; [n le 16 select I[n] else 10*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, -1}, {652, 724, 788, 1012, 1828, 2372, 2596, 2908, 6164, 6908, 7564, 9836, 17996, 23404, 25628, 28724}, 40] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x -163) / (x^16-10*x^8+1) + O(x^100))
    

Formula

a(n) = 10*a(n-8) -a(n-16).
G.f.: -4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x-163) / (x^16 -10*x^8 +1).

A201632 If the sum of the squares of 4 consecutive numbers is a triangular number t(u), then a(n) is its index u.

Original entry on oeis.org

35, 83, 1203, 2835, 40883, 96323, 1388835, 3272163, 47179523, 111157235, 1602714963, 3776073843, 54445129235, 128275353443, 1849531679043, 4357585943235, 62829631958243, 148029646716563, 2134357954901235, 5028650402419923
Offset: 1

Views

Author

Paul Weisenhorn, Jan 09 2013

Keywords

Comments

Sum_{(e(n)+j)^2,j=0..3} = a(n)*(a(n)+1)/2=t(a(n)) give the Pell equation c(n)^2 - 32*d(n)^2 = 41 with 2*a(n) + 1 = c(n) and e(n) + 1.5 = d(n). e(n) = A201633(n).
In general, for the sum of the squares of k consecutive numbers, one get an analog sequence with k in {4, 5, 6, 7, 11, 15, 17, 19, 23,...}. It gives the Pell equation c(n)^2 - 8k*d(n)^2 = 4*binomial((k+1),3) + 1 with 2*a(n) + 1 = c(n) and e(n) + (k-1)/2 = d(n).

Examples

			For n=2: a(2)=83; t(83)=83*84/2=3486.
A201633(2)=e(2)=28; 28^2+29^2+30^2+31^2=3486.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,34,-34,-1,1},{35,83,1203,2835,40883},30] (* Harvey P. Dale, Dec 10 2024 *)

Formula

G.f.: (35*x+48*x^2-70*x^3+3*x^5)/((1-x)*(1-34*x^2+x^4)).
a(n+4) = 34*a(n+2) - a(n) + 16.
a(n+5) = a(n+4) + 34*a(n+3) - 34*a(n+2) - a(n+1) + a(n).
eigenvalues ej: {1,(3+2r),-(3+2r),(3-2r),-(3-2r)}.
a(n+1) = (k1*e1 + k2*e2^n + k3*e3^n + k4*e4^n + k5*e5^n)/4 for k1=-2; k2=50+35r; k3=21+15r; k4=50-35r; k5=21-15r, where r = sqrt(2).

Extensions

Corrected by R. J. Mathar, Jun 14 2016
Previous Showing 11-13 of 13 results.