A218676
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(5*n)/n! * exp(-n*x*A(n*x)^5).
Original entry on oeis.org
1, 1, 6, 71, 1311, 34146, 1207717, 57298282, 3653975784, 316252925221, 37596625187796, 6206102367103899, 1434418185304457039, 466995106832397752352, 215051811411620578152401, 140491107719613466192347681, 130481943378389095603359529403
Offset: 0
O.g.f.: A(x) = 1 + x + 6*x^2 + 71*x^3 + 1311*x^4 + 34146*x^5 + 1207717*x^6 +...
where
A(x) = 1 + x*A(x)^5*exp(-x*A(x)^5) + 2^2*x^2*A(2*x)^10/2!*exp(-2*x*A(2*x)^5) + 3^3*x^3*A(3*x)^15/3!*exp(-3*x*A(3*x)^5) + 4^4*x^4*A(4*x)^20/4!*exp(-4*x*A(4*x)^5) + 5^5*x^5*A(5*x)^25/5!*exp(-5*x*A(5*x)^5) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^5,x,k*x)^k/k!*exp(-k*x*subst(A^5,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A219184
O.g.f. satisfies: A(x) = Sum_{n>=0} n^(2*n) * x^n * A(x)^n / n! * exp(-n^2*x*A(x)).
Original entry on oeis.org
1, 1, 8, 112, 2202, 55641, 1724050, 63550446, 2725133134, 133546286188, 7370574862110, 452601918694564, 30610161317492690, 2260721225822606054, 181023122013996360316, 15619416644091171417138, 1444615406376578862379054, 142565035949775130517868740
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 112*x^3 + 2202*x^4 + 55641*x^5 + 1724050*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^4*x^2*A(x)^2/2!*exp(-4*x*A(x)) + 3^6*x^3*A(x)^3/3!*exp(-9*x*A(x)) + 4^8*x^4*A(x)^4/4!*exp(-16*x*A(x)) + 5^10*x^5*A(x)^5/5!*exp(-25*x*A(x)) +...
simplifies to a power series in x with integer coefficients.
O.g.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins:
G(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 + 1323652*x^6 +...+ Stirling2(2*n,n)*x^n +...
so that A(x) = (1/x)*Series_Reversion(x/G(x)).
-
{a(n)=local(A=1);for(i=1,n,A=sum(m=0, n, (m^2*x*A)^m/m!*exp(-m^2*x*A+x*O(x^n))));polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A209276
O.g.f. satisfies: A(x) = Sum_{n>=0} (n+2)^n * x^n * A((n+2)*x)^n/n! * exp(-(n+2)*x*A((n+2)*x)).
Original entry on oeis.org
1, 1, 6, 133, 9403, 2065969, 1400088539, 2908156231705, 18410003437367130, 353588715425938097698, 20534146782689861283550052, 3596867485365965032072729708845, 1897112888731795684931545113460297299, 3009299517165127420220975531888408947667944
Offset: 0
O.g.f.: A(x) = 1 + x + 6*x^2 + 133*x^3 + 9403*x^4 + 2065969*x^5 +...
where
A(x) = exp(-2*x*A(2*x)) + 3*x*A(3*x)*exp(-3*x*A(3*x)) + 4^2*x^2*A(4*x)^2/2!*exp(-4*x*A(4*x)) + 5^3*x^3*A(5*x)^3/3!*exp(-5*x*A(5*x)) + 6^4*x^4*A(6*x)^4/4!*exp(-6*x*A(6*x)) + 7^5*x^5*A(7*x)^5/5!*exp(-7*x*A(7*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (k+2)^k*x^k*subst(A, x, (k+2)*x)^k/k!*exp(-(k+2)*x*subst(A, x, (k+2)*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A209277
O.g.f. satisfies: A(x) = Sum_{n>=0} (n+3)^n * x^n * A((n+3)*x)^n/n! * exp(-(n+3)*x*A((n+3)*x)).
Original entry on oeis.org
1, 1, 8, 321, 57879, 45643415, 154158595175, 2190765237132015, 129241431881731600186, 31339180791153421540163500, 31011964321205837200260130287298, 124581202469689320858858825068619255535, 2023924731754579903607034623889070335771466703
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 321*x^3 + 57879*x^4 + 45643415*x^5 +...
where
A(x) = exp(-3*x*A(3*x)) + 4*x*A(4*x)*exp(-4*x*A(4*x)) + 5^2*x^2*A(5*x)^2/2!*exp(-5*x*A(5*x)) + 6^3*x^3*A(6*x)^3/3!*exp(-6*x*A(6*x)) + 7^4*x^4*A(7*x)^4/4!*exp(-7*x*A(7*x)) + 8^5*x^5*A(8*x)^5/5!*exp(-8*x*A(8*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (k+3)^k*x^k*subst(A, x, (k+3)*x)^k/k!*exp(-(k+3)*x*subst(A, x, (k+3)*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A219342
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^3*x)^n/n! * exp(-n*x*A(n^3*x)).
Original entry on oeis.org
1, 1, 2, 33, 939, 101175, 26230876, 21032800086, 48319626581926, 319633065306440005, 6299181667747767151873, 359980854813102654362716667, 60552379844778585329083453881153, 30125614945616982039421647789900799744, 43971297878008421196972637327280065832735828
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 33*x^3 + 939*x^4 + 101175*x^5 + 26230876*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^3*x)^2/2!*exp(-2*x*A(2^3*x)) + 3^3*x^3*A(3^3*x)^3/3!*exp(-3*x*A(3^3*x)) + 4^4*x^4*A(4^3*x)^4/4!*exp(-4*x*A(4^3*x)) + 5^5*x^5*A(5^3*x)^5/5!*exp(-5*x*A(5^3*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A,x,k^3*x)^k/k!*exp(-k*x*subst(A,x,k^3*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A185029
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^4*x)^n/n! * exp(-n*x*A(n^4*x)).
Original entry on oeis.org
1, 1, 2, 65, 3524, 1364432, 1445333132, 7913299718555, 162327934705456532, 14083866155101076361024, 5251111824344114834186373747, 7956883819596423111541696080219295, 51760975171209084256721290749117849746987, 1424616119143714906580708999710589586791029920856
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 65*x^3 + 3524*x^4 + 1364432*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^4*x)^2/2!*exp(-2*x*A(2^4*x)) + 3^3*x^3*A(3^4*x)^3/3!*exp(-3*x*A(3^4*x)) + 4^4*x^4*A(4^4*x)^4/4!*exp(-4*x*A(4^4*x)) + 5^5*x^5*A(5^4*x)^5/5!*exp(-5*x*A(5^4*x)) +...
simplifies to a power series in x with integer coefficients.
A219228
O.g.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * (n^3*x)^n/n! * exp(-n^3*x*A(x)).
Original entry on oeis.org
1, 1, 32, 3119, 625710, 214333471, 112105268136, 83149960883200, 83014425998481126, 107334569041127441462, 174471878478682785998864, 348242875992753988109552778, 837327855535084109106340786272, 2387108242583316451939303856237037
Offset: 0
O.g.f.: A(x) = 1 + x + 32*x^2 + 3119*x^3 + 625710*x^4 + 214333471*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^6*x^2*A(x)^2/2!*exp(-8*x*A(x)) + 3^9*x^3*A(x)^3/3!*exp(-27*x*A(x)) + 4^12*x^4*A(x)^4/4!*exp(-64*x*A(x)) + 5^15*x^5*A(x)^5/5!*exp(-125*x*A(x)) +...
simplifies to a power series in x with integer coefficients.
G.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins:
G(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + 210766920*x^5 + 110687251039*x^6 +...+ Stirling2(3*n,n)*x^n +...
-
{a(n)=local(A=1);for(i=1,n,A=sum(m=0, n, (m^3*x*A)^m/m!*exp(-m^3*x*A+x*O(x^n))));polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A219264
O.g.f. satisfies: A(x) = Sum_{n>=0} A(n*x)^n * (n^2*x)^n/n! * exp(-n^2*x*A(n*x)).
Original entry on oeis.org
1, 1, 8, 128, 3259, 120082, 6151625, 433404057, 42180568185, 5720993700540, 1088246094845838, 291276119631119408, 109983236494820652007, 58741463418913578672779, 44466318283501559718838424, 47771843216826858235974983400, 72930986725295232949801895385998
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 128*x^3 + 3259*x^4 + 120082*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^4*x^2*A(2*x)^2/2!*exp(-2^2*x*A(2*x)) + 3^6*x^3*A(3*x)^3/3!*exp(-3^2*x*A(3*x)) + 4^8*x^4*A(4*x)^4/4!*exp(-4^2*x*A(4*x)) + 5^10*x^5*A(5*x)^5/5!*exp(-5^2*x*A(5*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^(2*k)*x^k*subst(A,x,k*x)^k/k!*exp(-k^2*x*subst(A,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A219265
O.g.f. satisfies: A(x) = Sum_{n>=0} A(n^2*x)^n * (n^2*x)^n/n! * exp(-n^2*x*A(n^2*x)).
Original entry on oeis.org
1, 1, 8, 160, 6918, 609469, 106947753, 37651271215, 26931993643529, 39243099256414069, 116654228928308598913, 710224935200206160129234, 8867331728829780268501045551, 227187317486051730833557991305666, 11969414396907448200529521385052444890
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 160*x^3 + 6918*x^4 + 609469*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^4*x^2*A(2^2*x)^2/2!*exp(-2^2*x*A(2^2*x)) + 3^6*x^3*A(3^2*x)^3/3!*exp(-3^2*x*A(3^2*x)) + 4^8*x^4*A(4^2*x)^4/4!*exp(-4^2*x*A(4^2*x)) + 5^10*x^5*A(5^2*x)^5/5!*exp(-5^2*x*A(5^2*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^(2*k)*x^k*subst(A,x,k^2*x)^k/k!*exp(-k^2*x*subst(A,x,k^2*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A216246
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n*x^2)^n/n! * exp(-n*x*A(n*x^2)).
Original entry on oeis.org
1, 1, 1, 2, 7, 20, 62, 228, 867, 3474, 14864, 67101, 316028, 1540782, 7792810, 40669011, 218087867, 1201778736, 6792071574, 39309770969, 232718797430, 1407837227275, 8694994837673, 54771751869237, 351643945379956, 2299330292987022, 15302662859459784
Offset: 0
O.g.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 20*x^5 + 62*x^6 + 228*x^7 +...
where
A(x) = 1 + x*A(x^2)*exp(-x*A(x^2)) + 2^2*x^2*A(2*x^2)^2/2!*exp(-2*x*A(2*x^2)) + 3^3*x^3*A(3*x^2)^3/3!*exp(-3*x*A(3*x^2)) + 4^4*x^4*A(4*x^2)^4/4!*exp(-4*x*A(4*x^2)) + 5^5*x^5*A(5*x^2)^5/5!*exp(-5*x*A(5*x^2)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, k*x^2)^k/k!*exp(-k*x*subst(A, x, k*x^2)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Comments