cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A344097 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+4,4).

Original entry on oeis.org

1, 5, 25, 120, 505, 2027, 7740, 28345, 100355, 344815, 1154130, 3773955, 12085125, 37971645, 117258755, 356386016, 1067364240, 3153415695, 9198749905, 26516197720, 75586609016, 213212467695, 595482274750, 1647568369230, 4517987288720, 12284672226583, 33133931688645
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 4, 4], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 4, 4], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A174002(d) ) * a(n-k).

A344098 a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(k+n-1,n-1).

Original entry on oeis.org

1, 1, 4, 29, 221, 2027, 21022, 242209, 3060262, 41936745, 618154670, 9735013136, 162892047930, 2882449728121, 53727527279464, 1051276401060921, 21529017626095851, 460231878244308738, 10246160509840187387, 237067632496414877363, 5689786581042000827057, 141415234722601777758232
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[k + n - 1, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 21}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(j/d + 1) d Binomial[d + k - 1, k - 1], {d, Divisors[j]}] A[n - j, k], {j, 1, n}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 21}]

A305628 Expansion of Product_{k>=1} 1/(1 + x^k)^(k+1).

Original entry on oeis.org

1, -2, 0, -2, 5, -2, 7, -6, 11, -20, 13, -32, 31, -50, 60, -70, 124, -112, 192, -198, 295, -364, 422, -616, 661, -1002, 1034, -1500, 1737, -2208, 2808, -3234, 4462, -4876, 6735, -7464, 9990, -11610, 14410, -17866, 20947, -27082, 30493, -40056, 45147, -58196, 66999, -83278, 99641
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2018

Keywords

Comments

Convolution of A081362 and A255528.
Convolution inverse of A219555.

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/(1 + x^k)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[(-1)^k x^k (2 - x^k)/(k (1 - x^k)^2), {k, 1, nmax}]], {x,0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d (d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(2 - x^k)/(k*(1 - x^k)^2)).
a(n) ~ (-1)^n * exp(3 * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (3 * 2^(7/3) * Zeta(3)^(1/3)) - 1/12 - Pi^4 / (864 * Zeta(3))) * A * Zeta(3)^(5/36) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Aug 21 2018

A363600 Number of partitions of n into distinct parts where there are k^2+1 kinds of part k.

Original entry on oeis.org

1, 2, 6, 20, 52, 140, 356, 880, 2123, 5016, 11610, 26400, 59130, 130476, 284216, 611592, 1301344, 2740194, 5713930, 11806144, 24184908, 49142504, 99091244, 198360536, 394342884, 778818658, 1528531702, 2982017956, 5784365082, 11158728448, 21413292868
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, (1+x^k)^(k^2+1)))

Formula

G.f.: Product_{k>=1} (1+x^k)^(k^2+1).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * (d^2+1) ) * a(n-k).

Extensions

Name suggested by Joerg Arndt, Jun 11 2023
Previous Showing 11-14 of 14 results.